scholarly journals Changes in Gene Expression of the MCU Complex Are Induced by Electrical Stimulation in Adult Skeletal Muscle

2021 ◽  
Vol 11 ◽  
Author(s):  
Esteban R. Quezada ◽  
Alexis Díaz-Vegas ◽  
Enrique Jaimovich ◽  
Mariana Casas

The slow calcium transient triggered by low-frequency electrical stimulation (ES) in adult muscle fibers and regulated by the extracellular ATP/IP3/IP3R pathway has been related to muscle plasticity. A regulation of muscular tropism associated with the MCU has also been described. However, the role of transient cytosolic calcium signals and signaling pathways related to muscle plasticity over the regulation of gene expression of the MCU complex (MCU, MICU1, MICU2, and EMRE) in adult skeletal muscle is completely unknown. In the present work, we show that 270 0.3-ms-long pulses at 20-Hz ES (and not at 90 Hz) transiently decreased the mRNA levels of the MCU complex in mice flexor digitorum brevis isolated muscle fibers. Importantly, when ATP released after 20-Hz ES is hydrolyzed by the enzyme apyrase, the repressor effect of 20 Hz on mRNA levels of the MCU complex is lost. Accordingly, the exposure of muscle fibers to 30 μM exogenous ATP produces the same effect as 20-Hz ES. Moreover, the use of apyrase in resting conditions (without ES) increased mRNA levels of MCU, pointing out the importance of extracellular ATP concentration over MCU mRNA levels. The use of xestospongin B (inhibitor of IP3 receptors) also prevented the decrease of mRNA levels of MCU, MICU1, MICU2, and EMRE mediated by a low-frequency ES. Our results show that the MCU complex can be regulated by electrical stimuli in a frequency-dependent manner. The changes observed in mRNA levels may be related to changes in the mitochondria, associated with the phenotypic transition from a fast- to a slow-type muscle, according to the described effect of this stimulation frequency on muscle phenotype. The decrease in mRNA levels of the MCU complex by exogenous ATP and the increase in MCU levels when basal ATP is reduced with the enzyme apyrase indicate that extracellular ATP may be a regulator of the MCU complex. Moreover, our results suggest that this regulation is part of the axes linking low-frequency stimulation with ATP/IP3/IP3R.

2001 ◽  
Vol 155 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Yewei Liu ◽  
Zoltán Cseresnyés ◽  
William R. Randall ◽  
Martin F. Schneider

TTranscription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type–specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S→A)] were expressed in cultured adult mouse skeletal muscle fibers from flexor digitorum brevis (predominantly fast-twitch). Unstimulated fibers expressing NFATc(S→A) exhibited a distinct intranuclear pattern of NFATc foci. In unstimulated fibers expressing NFATc–GFP, fluorescence was localized at the sarcomeric z-lines and absent from nuclei. Electrical stimulation using activity patterns typical of slow-twitch muscle, either continuously at 10 Hz or in 5-s trains at 10 Hz every 50 s, caused cyclosporin A–sensitive appearance of fluorescent foci of NFATc–GFP in all nuclei. Fluorescence of nuclear foci increased during the first hour of stimulation and then remained constant during a second hour of stimulation. Kinase inhibitors and ionomycin caused appearance of nuclear foci of NFATc–GFP without electrical stimulation. Nuclear translocation of NFATc–GFP did not occur with either continuous 1 Hz stimulation or with the fast-twitch fiber activity pattern of 0.1-s trains at 50 Hz every 50 s. The stimulation pattern–dependent nuclear translocation of NFATc demonstrated here could thus contribute to fast-twitch to slow-twitch fiber type transformation.


2006 ◽  
Vol 17 (4) ◽  
pp. 1570-1582 ◽  
Author(s):  
Tiansheng Shen ◽  
Yewei Liu ◽  
Zoltán Cseresnyés ◽  
Arie Hawkins ◽  
William R. Randall ◽  
...  

The transcription factor NFATc1 may be involved in slow skeletal muscle gene expression. NFATc1 translocates from cytoplasm to nuclei during slow fiber type electrical stimulation of skeletal muscle fibers because of activation of the Ca2+-dependent phosphatase calcineurin, resulting in nuclear factor of activated T-cells (NFAT) dephosphorylation and consequent exposure of its nuclear localization signal. Here, we find that unstimulated adult skeletal muscle fibers exhibit a previously unanticipated nucleocytoplasmic shuttling of NFATc1 without appreciable nuclear accumulation. In resting fibers, the nuclear export inhibitor leptomycin B caused nuclear accumulation of NFATc1 (but not of isoform NFATc3) and formation of NFATc1 intranuclear bodies independent of calcineurin. The rate of nuclear uptake of NFATc1 was 4.6 times lower in resting fibers exposed to leptomycin B than during electrical stimulation. Inhibitors of glycogen synthase kinase and protein kinase A or of casein kinase 1 slowed the decay of nuclear NFATc1 after electrical stimulation, but they did not cause NFATc1 nuclear uptake in unstimulated fibers. We propose that two nuclear translocation pathways, one pathway mediated by calcineurin activation and NFAT dephosphorylation and the other pathway independent of calcineurin and possibly independent of NFAT dephosphorylation, determine the distribution of NFATc1 between cytoplasm and nuclei in adult skeletal muscle.


2005 ◽  
Vol 30 (5) ◽  
pp. 625-643 ◽  
Author(s):  
Vladimir Ljubicic ◽  
Peter J. Adhihetty ◽  
David A. Hood

Unilateral, chronic low-frequency electrical stimulation (CLFS) is an experimental model that evokes numerous biochemical and physiological adaptations in skeletal muscle. These occur within a short time frame and are restricted to the stimulated muscle. The humoral effects of whole body exercise are eliminated and the nonstimulated contralaterai limb can often be used as a control muscle, if possible effects on the contralateral side are considered. CLFS induces a fast-to-slow transformation of muscle because of alterations in calcium dynamics and myofibrillar proteins, and a white-to-red transformation because of changes in mitochondrial enzymes, myoglobin, and the induction of angiogenesis. These adaptations occur in a coordinated time-dependent manner and result from altered gene expression, including transcriptional and posttranscriptional processes. CLFS techniques have also been applied to myocytes in cell culture, which provide a greater opportunity for the delivery of pharmacological agents or for the application of gene transfer methodologies. Clinical applications of the CLFS technique have been limited, but they have shown potential therapeutic value in patients in whom voluntary muscle contraction is not possible due to debilitating disease and/or injury. Thus the CLFS technique has great value for studying various aspects of muscle adaptation, and its wider scientific application to a variety of neuromuscular-based disorders in humans appears to be warranted. Key words: skeletal muscle, muscle plasticity, endurance training, mitochondrial biogenesis, fiber types


Author(s):  
Ugo Carraro

Gerta Sidonová - Vrbová, (Trnava, Slovakia, November 28, 1926 - London, UK, October 2, 2020) has been a key neuroscientist, who for almost half a century has contributed important findings and hypotheses on the relationships between motoneurons and skeletal muscle fibers, in particular on the differentiation and extent of plasticity of the peculiar characteristics of the different types of fibers present in mammalian muscles. This issue, Ejtm 31 (1), 2021, opens with the personal obituary authored by Dirk Pette, who remember his lifelong collaboration with Gerta, describing the many molecular and metabolic events that occur by changing the pattern of activation of adult muscle fibers through neuromuscular low frequency electrical stimulation. To honor the many scientific legacies of Gerta Vrbová and her impact on a generation of researchers studying myology and managements of neuromuscular disorders I add here additional examples of Gerta’s scientific heritage and of her relations with colleagues.


2012 ◽  
Vol 303 (8) ◽  
pp. C854-C861 ◽  
Author(s):  
Janna R. Jackson ◽  
Jyothi Mula ◽  
Tyler J. Kirby ◽  
Christopher S. Fry ◽  
Jonah D. Lee ◽  
...  

Resident muscle stem cells, known as satellite cells, are thought to be the main mediators of skeletal muscle plasticity. Satellite cells are activated, replicate, and fuse into existing muscle fibers in response to both muscle injury and mechanical load. It is generally well-accepted that satellite cells participate in postnatal growth, hypertrophy, and muscle regeneration following injury; however, their role in muscle regrowth following an atrophic stimulus remains equivocal. The current study employed a genetic mouse model (Pax7-DTA) that allowed for the effective depletion of >90% of satellite cells in adult muscle upon the administration of tamoxifen. Vehicle and tamoxifen-treated young adult female mice were either hindlimb suspended for 14 days to induce muscle atrophy or hindlimb suspended for 14 days followed by 14 days of reloading to allow regrowth, or they remained ambulatory for the duration of the experimental protocol. Additionally, 5-bromo-2′-deoxyuridine (BrdU) was added to the drinking water to track cell proliferation. Soleus muscle atrophy, as measured by whole muscle wet weight, fiber cross-sectional area, and single-fiber width, occurred in response to suspension and did not differ between satellite cell-depleted and control muscles. Furthermore, the depletion of satellite cells did not attenuate muscle mass or force recovery during the 14-day reloading period, suggesting that satellite cells are not required for muscle regrowth. Myonuclear number was not altered during either the suspension or the reloading period in soleus muscle fibers from vehicle-treated or satellite cell-depleted animals. Thus, myonuclear domain size was reduced following suspension due to decreased cytoplasmic volume and was completely restored following reloading, independent of the presence of satellite cells. These results provide convincing evidence that satellite cells are not required for muscle regrowth following atrophy and that, instead, the myonuclear domain size changes as myofibers adapt.


Author(s):  
Ugo Carraro

Gerta Sidonová - Vrbová, (Trnava, Slovakia, November 28, 1926 - London, UK, October 2, 2020) has been a key neuroscientist, who for almost half a century has contributed important findings and hypotheses on the relationships between motoneurons and skeletal muscle fibers, in particular on the differentiation and extent of plasticity of the peculiar characteristics of the different types of fibers present in mammalian muscles. This issue, Ejtm 31 (1), 2021, opens with the personal obituary authored by Dirk Pette, who remember his lifelong collaboration with Gerta, describing the many molecular and metabolic events that occur by changing the pattern of activation of adult muscle fibers through neuromuscular low frequency electrical stimulation. To honor the many scientific legacies of Gerta Vrbová and her impact on a generation of researchers studying myology and managements of neuromuscular disorders I add here additional examples of Gerta’s scientific heritage and of her relations with colleagues.


Author(s):  
I. Taylor ◽  
P. Ingram ◽  
J.R. Sommer

In studying quick-frozen single intact skeletal muscle fibers for structural and microchemical alterations that occur milliseconds, and fractions thereof, after electrical stimulation, we have developed a method to compare, directly, ice crystal formation in freeze-substituted thin sections adjacent to all, and beneath the last, freeze-dried cryosections. We have observed images in the cryosections that to our knowledge have not been published heretofore (Figs.1-4). The main features are that isolated, sometimes large regions of the sections appear hazy and have much less contrast than adjacent regions. Sometimes within the hazy regions there are smaller areas that appear crinkled and have much more contrast. We have also observed that while the hazy areas remain still, the regions of higher contrast visibly contract in the beam, often causing tears in the sections that are clearly not caused by ice crystals (Fig.3, arrows).


1998 ◽  
Vol 83 (2) ◽  
pp. 448-452
Author(s):  
H. F. Erden ◽  
I. H. Zwain ◽  
H. Asakura ◽  
S. S. C. Yen

Recently, we reported that the thecal compartment of the human ovary contains a CRF system replete with gene expression and protein for corticotropin-releasing factor (CRF), CRF-Receptor 1 (CRF-R1), and the blood-derived high affinity CRF-binding protein (CRF-BP). Granulosa cells are devoid of the CRF system. The parallel increases in intensity of CRF, CRF-R1, and 17α-hydroxylase messenger ribonucleic acid (mRNA) and proteins in thecal cells with follicular maturation suggest that the intraovarian CRF system may play an autocrine role regulating androgen biosynthesis, with a downstream effect on estrogen production by granulosa cells. The functionality of the ovarian CRF system may be conditioned by the relative presence of plasma-derived CRF-BP by virtue of its localization of protein, but not transcript in thecal cells and its ability to compete with CRF for the CRF receptor. To further these findings, in the present study we have examined the effect of CRF on LH-stimulated 17α-hydroxylase (P450c17) gene expression and androgen production by isolated thecal cells from human ovarian follicles (11–13 mm). During the 48-h culture, addition of LH (10 ng/mL) to the medium increased by 5- and 6-fold dehydroepiandrosterone and androstenedione production by thecal cells. Remarkably, the LH-stimulated, but not basal, androgen production was inhibited by CRF in a time- and dose-dependent manner. The half-maximal (ID50) effect dose of CRF occurred at 5 × 10−8 mol/L, and at a maximal concentration of 10−6 mol/L, CRF completely inhibited LH-stimulated androgen production. This inhibitory effect of CRF became evident at 12 h (45%), and by 24 h the effect was more pronounced, with a 70% reduction from baseline. As determined by Northern analyses, CRF dose dependently decreased LH-stimulated P450c17 mRNA levels, with a maximal inhibition of 85% P450c17 gene expression at a CRF concentration of 10−6 mol/L. With the addition of 10−6 mol/L of the antagonist α-helical CRF-(9–41), the inhibitory effect of CRF was partially reversed for both P450c17 mRNA (75%) and androgen production (50%), indicating the CRF-R1-mediated event. In conclusion, the present study demonstrated a potent inhibitory effect of CRF on LH-stimulated dehydroepiandrosterone and androstenedione production that appears to be mediated through the reduction of P450c17 gene expression. Thus, the ovarian CRF system may function as autocrine regulators for androgen biosynthesis in the thecal cell compartment to maintain optimal substrate for estrogen biosynthesis by granulosa cells. Further studies to define the role of CRF-BP in the endocrine modulation of the intraovarian CRF system are needed.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Yoshiaki Ohyama ◽  
Toru Tanaka ◽  
Takehisa Shimizu ◽  
Hiroshi Doi ◽  
Norimichi Koitabashi ◽  
...  

Backgroud: Recent studies demonstrated non-hematopoietical effects of Erythropoietin (Epo) and its receptor (EpoR) in a variety of tissues including cardiovascular system. Epo treatment improves cardiac function in patients with heart failure and reduces infarct size after ischemia/reperfusion injury in the heart. However, little attention has been paid for the endogenous regulatory mechanisms regulating EpoR expression. In this study, we hypothesize that B-type natriuretic peptide upregulates EpoR gene expression in failing heart. Methods and Results: Wister rats underwent transverse aortic constriction surgery to induce hypertrophy. RT-PCR analyses of those rats showed that EpoR mRNA levels were increased in the left ventricle and positively correlated with the levels of BNP mRNA (n=10, r=0.67, p<0.05). Next we examined the expression of EpoR in human failing heart by using autopsy specimens and found that EpoR mRNA levels were significantly elevated in patients with dilated cardiomyopathy compared with those in normal heart. Immunohistochemistry of endomyocardial biopsy specimens of failing heart (n=54) showed that EpoR mRNA levels were correlated with severity of cardiac dysfunction estimated by diameter of cardiac chambers, pathomorphology, serum BNP concentration and functional class of New York Heart Association. Interestingly, stimulation of cultured neonatal rat cardiac myocytes with BNP, but not with hypertrophic reagents including endothelin I, angiotensin II and norepinephrine, significantly increased the EpoR mRNA levels in a time-dependent manner. Overexpression of cGMP-dependent protein kinase (PKG) increased EpoR transcript in cultured cardiac myocytes. BNP-induced EpoR expression was abrogated in the presence of KT5823, a specific inhibitor for PKG. Conclusion: These results suggest a role for BNP in mediating an induction of EpoR expression in failing myocardium and indicate that the cardiac EpoR gene is a target of cGMP/PKG signaling.


1994 ◽  
Vol 267 (5) ◽  
pp. C1398-C1404 ◽  
Author(s):  
F. Besancon ◽  
G. Przewlocki ◽  
I. Baro ◽  
A. S. Hongre ◽  
D. Escande ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective transepithelial Cl- transport. The regulation of CF gene expression is not fully understood. We report that interferon-gamma (IFN-gamma), but not IFN-alpha or -beta, downregulates CFTR mRNA levels in two colon-derived epithelial cell lines, HT-29 and T84, in a time- and concentration (from 0.1 IU/ml)-dependent manner. IFN-gamma has no effect on the transcription rate of the CFTR gene but reduces CFTR mRNA half-life, indicating that it exerts a posttranscriptional regulation of CFTR expression, at least partly, through destabilization of the transcripts. Cells treated with IFN-gamma contain subnormal amounts of 165-kDa CFTR protein. Assays of adenosine 3',5'-cyclic monophosphate-stimulated 36Cl- efflux and whole cell currents show that CFTR function is diminished in IFN-gamma-treated cells. IFN-gamma and tumor necrosis factor-alpha synergistically reduce CFTR gene expression. Our results suggest that production of these cytokines in response to bacterial infections and inflammatory disorders may alter transmembrane Cl- transport.


Sign in / Sign up

Export Citation Format

Share Document