scholarly journals Impaired dynamic cerebral autoregulation in trained breath-hold divers

2019 ◽  
Vol 126 (6) ◽  
pp. 1694-1700 ◽  
Author(s):  
M. Erin Moir ◽  
Stephen A. Klassen ◽  
Baraa K. Al-Khazraji ◽  
Emilie Woehrle ◽  
Sydney O. Smith ◽  
...  

Breath-hold divers (BHD) experience repeated bouts of severe hypoxia and hypercapnia with large increases in blood pressure. However, the impact of long-term breath-hold diving on cerebrovascular control remains poorly understood. The ability of cerebral blood vessels to respond rapidly to changes in blood pressure represents the property of dynamic autoregulation. The current investigation tested the hypothesis that breath-hold diving impairs dynamic autoregulation to a transient hypotensive stimulus. Seventeen BHD (3 women, 11 ± 9 yr of diving) and 15 healthy controls (2 women) completed two or three repeated sit-to-stand trials during spontaneous breathing and poikilocapnic conditions. Heart rate (HR), finger arterial blood pressure (BP), and cerebral blood flow velocity (BFV) from the right middle cerebral artery were measured continuously with three-lead electrocardiography, finger photoplethysmography, and transcranial Doppler ultrasonography, respectively. End-tidal carbon dioxide partial pressure was measured with a gas analyzer. Offline, an index of cerebrovascular resistance (CVRi) was calculated as the quotient of mean BP and BFV. The rate of the drop in CVRi relative to the change in BP provided the rate of regulation [RoR; (∆CVRi/∆T)/∆BP]. The BHD demonstrated slower RoR than controls ( P ≤ 0.001, d = 1.4). Underlying the reduced RoR in BHD was a longer time to reach nadir CVRi compared with controls ( P = 0.004, d = 1.1). In concert with the longer CVRi response, the time to reach peak BFV following standing was longer in BHD than controls ( P = 0.01, d = 0.9). The data suggest impaired dynamic autoregulatory mechanisms to hypotension in BHD. NEW & NOTEWORTHY Impairments in dynamic cerebral autoregulation to hypotension are associated with breath-hold diving. Although weakened autoregulation was observed acutely in this group during apneic stress, we are the first to report on chronic adaptations in cerebral autoregulation. Impaired vasomotor responses underlie the reduced rate of regulation, wherein breath-hold divers demonstrate a prolonged dilatory response to transient hypotension. The slower cerebral vasodilation produces a longer perturbation in cerebral blood flow velocity, increasing the risk of cerebral ischemia.

2010 ◽  
Vol 108 (5) ◽  
pp. 1162-1168 ◽  
Author(s):  
Yu-Chieh Tzeng ◽  
Samuel J. E. Lucas ◽  
Greg Atkinson ◽  
Chris K. Willie ◽  
Philip N. Ainslie

The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex sensitivity (BRS) in humans is unknown. Given that adequate cerebral perfusion during normal physiological challenges requires the integrated control of CA and the arterial baroreflex, we hypothesized that between-individual variability in dynamic CA would be related to BRS in humans. We measured R-R interval, blood pressure, and cerebral blood flow velocity (transcranial Doppler) in 19 volunteers. BRS was estimated with the modified Oxford method (nitroprusside-phenylephrine injections) and spontaneous low-frequency (0.04–0.15) α-index. Dynamic CA was quantified using the rate of regulation (RoR) and autoregulatory index (ARI) derived from the thigh-cuff release technique and transfer function analysis of spontaneous oscillations in blood pressure and mean cerebral blood flow velocity. Results show that RoR and ARI were inversely related to nitroprusside BRS [ R = −0.72, confidence interval (CI) −0.89 to −0.40, P = 0.0005 vs. RoR; R = −0.69, CI −0.88 to −0.35, P = 0.001 vs. ARI], phenylephrine BRS ( R = −0.66, CI −0.86 to −0.29, P = 0.0002 vs. RoR; R = −0.71, CI −0.89 to −0.38, P = 0.0001 vs. ARI), and α-index ( R = −0.70, CI −0.89 to −0.40, P = 0.0008 vs. RoR; R = −0.62, CI −0.84 to −0.24, P = 0.005 vs. ARI). Transfer function gain was positively related to nitroprusside BRS ( R = 0.62, CI 0.24–0.84, P = 0.0042), phenylephrine BRS ( R = 0.52, CI 0.10–0.79, P = 0.021), and α-index ( R = 0.69, CI 0.35–0.88, P = 0.001). These findings indicate that individuals with an attenuated dynamic CA have greater BRS (and vice versa), suggesting the presence of possible compensatory interactions between blood pressure and mechanisms of cerebral blood flow control in humans. Such compensatory adjustments may account for the divergent changes in dynamic CA and BRS seen, for example, in chronic hypotension and spontaneous hypertension.


2003 ◽  
Vol 95 (4) ◽  
pp. 1439-1445 ◽  
Author(s):  
William H. Cooke ◽  
Guy L. Pellegrini ◽  
Olga A. Kovalenko

Complete ganglion blockade alters dynamic cerebral autoregulation, suggesting links between systemic autonomic traffic and regulation of cerebral blood flow velocity. We tested the hypothesis that acute head-down tilt, a physiological maneuver that decreases systemic sympathetic activity, would similarly disrupt normal dynamic cerebral autoregulation. We studied 10 healthy young subjects (5 men and 5 women; age 21 ± 0.88 yr, height 169 ± 3.1 cm, and weight 76 ± 6.1 kg). ECG, beat-by-beat arterial pressure, respiratory rate, end-tidal CO2 concentration, and middle cerebral blood flow velocity were recorded continuously while subjects breathed to a metronome. We recorded data during 5-min periods and averaged responses from three Valsalva maneuvers with subjects in both the supine and -10° head-down tilt positions (randomized). Controlled-breathing data were analyzed in the frequency domain with power spectral analysis. The magnitude of input-output relations were determined with cross-spectral techniques. Head-down tilt significantly reduced Valsalva phase IV systolic pressure overshoot from 36 ± 4.0 (supine position) to 25 ± 4.0 mmHg (head down) ( P = 0.03). Systolic arterial pressure spectral power at the low frequency decreased from 5.7 ± 1.6 (supine) to 4.4 ± 1.6 mmHg2 (head down) ( P = 0.02), and mean arterial pressure spectral power at the low frequency decreased from 3.3 ± 0.79 (supine) to 2.0 ± 0.38 mmHg2 (head down) ( P = 0.05). Head-down tilt did not affect cerebral blood flow velocity or the transfer function magnitude and phase angle between arterial pressure and cerebral blood flow velocity. Our results show that in healthy humans, mild physiological manipulation of autonomic activity with acute head-down tilt has no effect on the ability of the cerebral vasculature to regulate flow velocity.


2010 ◽  
Vol 299 (1) ◽  
pp. R55-R61 ◽  
Author(s):  
N. C. S. Lewis ◽  
G. Atkinson ◽  
S. J. E. Lucas ◽  
E. J. M. Grant ◽  
H. Jones ◽  
...  

Epidemiological data indicate that the risk of neurally mediated syncope is substantially higher in the morning. Syncope is precipitated by cerebral hypoperfusion, yet no chronobiological experiment has been undertaken to examine whether the major circulatory factors, which influence perfusion, show diurnal variation during a controlled orthostatic challenge. Therefore, we examined the diurnal variation in orthostatic tolerance and circulatory function measured at baseline and at presyncope. In a repeated-measures experiment, conducted at 0600 and 1600, 17 normotensive volunteers, aged 26 ± 4 yr (mean ± SD), rested supine at baseline and then underwent a 60° head-up tilt with 5-min incremental stages of lower body negative pressure until standardized symptoms of presyncope were apparent. Pretest hydration status was similar at both times of day. Continuous beat-to-beat measurements of cerebral blood flow velocity, blood pressure, heart rate, stroke volume, cardiac output, and end-tidal Pco2 were obtained. At baseline, mean cerebral blood flow velocity was 9 ± 2 cm/s (15%) lower in the morning than the afternoon ( P < 0.0001). The mean time to presyncope was shorter in the morning than in the afternoon (27.2 ± 10.5 min vs. 33.1 ± 7.9 min; 95% CI: 0.4 to 11.4 min, P = 0.01). All measurements made at presyncope did not show diurnal variation ( P > 0.05), but the changes over time (from baseline to presyncope time) in arterial blood pressure, estimated peripheral vascular resistance, and α-index baroreflex sensitivity were greater during the morning tests ( P < 0.05). These data indicate that tolerance to an incremental orthostatic challenge is markedly reduced in the morning due to diurnal variations in the time-based decline in blood pressure and the initial cerebral blood flow velocity “reserve” rather than the circulatory status at eventual presyncope. Such information may be used to help identify individuals who are particularly prone to orthostatic intolerance in the morning.


Sign in / Sign up

Export Citation Format

Share Document