Blood Gas Analyses in Hyperbaric and Underwater Environments: A Systematic Review

Author(s):  
Matteo Paganini ◽  
Richard E. Moon ◽  
Nicole Boccalon ◽  
Giorgio E.M. Melloni ◽  
Tommaso Antonio Giacon ◽  
...  

Background: Pulmonary gas exchange during diving or in a dry hyperbaric environment is affected by increased breathing gas density and possibly water immersion. During free diving there is also the effect of apnea. Few studies have published blood gas data in underwater or hyperbaric environments: this review summarizes the available literature and was used to test the hypothesis that arterial PO2 under hyperbaric conditions can be predicted from blood gas measurement at 1 atmosphere assuming a constant arterial/alveolar PO2 ratio (a:A). Methods: A systematic search was performed on traditional sources including arterial blood gases obtained on humans in hyperbaric or underwater environments. The a:A was calculated at 1 atmosphere absolute (ATA). For each condition, predicted PaO2 at pressure was calculated using the 1 ATA a:A, and the measured PaO2 was plotted against the predicted value with Spearman correlation coefficients. Results: Of 3640 records reviewed, 30 studies were included: 25 were reports describing values obtained in hyperbaric chambers, and the remaining were collected while underwater. Increased inspired O2 at pressure resulted in increased PaO2, although underlying lung disease in patients treated with hyperbaric oxygen attenuated the rise. PaCO2 generally increased only slightly. In breath-hold divers, hyperoxemia generally occurred at maximum depth, with hypoxemia after surfacing. The a:A adequately predicted the PaO2 under various conditions: dry (r=0.993, p< 0.0001); rest vs. exercise (r=0.999, p< 0.0001); and breathing mixtures (r=0.995, p< 0.0001). Conclusion: Pulmonary oxygenation under hyperbaric conditions can be reliably and accurately predicted from 1 ATA a:A measurements.

1999 ◽  
Vol 43 (4) ◽  
pp. 242
Author(s):  
MICHAEL ZAUGG ◽  
ELIANA LUCCHINETTI ◽  
MARCO P. ZALUNARDO ◽  
STEFAN ZUMSTEIN ◽  
DONAT R. SPAHN ◽  
...  

CJEM ◽  
2002 ◽  
Vol 4 (01) ◽  
pp. 7-15 ◽  
Author(s):  
Louise C.F. Rang ◽  
Heather E. Murray ◽  
George A. Wells ◽  
Cameron K. MacGougan

ABSTRACTObjective:To determine if peripheral venous blood gas values for pH, partial pressure of carbon dioxide (PCO2) and the resultant calculated bicarbonate (HCO3) predict arterial values accurately enough to replace them in a clinical setting.Methods:This prospective observational study was performed in a university tertiary care emergency department from June to December 1998. Patients requiring arterial blood gas analysis were enrolled and underwent simultaneous venous blood gas sampling. The following data were prospectively recorded: age, sex, presenting complaint, vital signs, oxygen saturation, sample times, number of attempts and indication for testing. Correlation coefficients and mean differences with 95% confidence intervals (CIs) were calculated for pH,PCO2and HCO3. A survey of 45 academic emergency physicians was performed to determine the minimal clinically important difference for each variable.Results:The 218 subjects ranged in age from 15 to 90 (mean 60.4) years. The 2 blood samples were drawn within 10 minutes of each other for 205 (96%) of the 214 patients for whom data on timing were available. Pearson’s product–moment correlation coefficients between arterial and venous values were as follows: pH, 0.913;PCO2, 0.921; and HCO3, 0.953. The mean differences (and 95% CIs) between arterial and venous samples were as follows: pH, 0.036 (0.030–0.042);PCO2, 6.0 (5.0–7.0) mm Hg; and HCO3, 1.5 (1.3–1.7) mEq/L. The mean differences (± 2 standard deviations) were greater than the minimum clinically important differences identified in the survey.Conclusions:Arterial and venous blood gas samples were strongly correlated, and there were only small differences between them. A survey of emergency physicians suggested that the differences are too large to allow for interchangeability of results; however, venous values may be valid if used in conjunction with a correction factor or for trending purposes.


1998 ◽  
Vol 87 (3) ◽  
pp. 647-653
Author(s):  
Michael Zaugg ◽  
Eliana Lucchinetti ◽  
Marco P. Zalunardo ◽  
Stefan Zumstein ◽  
Donat R. Spahn ◽  
...  

1998 ◽  
Vol 87 (3) ◽  
pp. 647-653 ◽  
Author(s):  
Michael Zaugg ◽  
Eliana Lucchinetti ◽  
Marco P. Zalunardo ◽  
Stefan Zumstein ◽  
Donat R. Spahn ◽  
...  

Healthcare ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 74
Author(s):  
Pietro Elias Fubini ◽  
Laurent Suppan

Shortness of breath is a common complaint among patients in emergency medicine. While most common causes are usually promptly identified, less frequent aetiologies might be challenging to diagnose, especially in the pre-hospital setting. We report a case of prehospital dyspnoea initially ascribed to pulmonary oedema which turned out to be the result of profound metformin-associated metabolic acidosis. This diagnosis was already made during the prehospital phase by virtue of arterial blood gas measurement. Pre-hospital measurement of arterial blood gases is therefore feasible and can improve diagnostic accuracy in the field, thus avoiding unnecessary delay and potential harm to the patient before initiating the appropriate therapeutic actions.


Perfusion ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Frode Kristiansen ◽  
Jan Olav Høgetveit ◽  
Thore H Pedersen

This paper presents the clinical testing of a new capno-graph designed to measure the carbon dioxide tension at the oxygenator exhaust outlet in cardiopulmonary bypass (CPB). During CPB, there is a need for reliable, accurate and instant estimates of the arterial blood CO2 tension (PaCO2) in the patient. Currently, the standard practice for measuring PaCO2 involves the manual collection of intermittent blood samples, followed by a separate analysis performed by a blood gas analyser. Probes for inline blood gas measurement exist, but they are expensive and, thus, unsuitable for routine use. A well-known method is to measure PexCO2, ie, the partial pressure of CO2 in the exhaust gas output from the oxygenator and use this as an indirect estimate for PaCO2. Based on a commercially available CO2 sensor circuit board, a laminar flow capnograph was developed. A standard sample line with integrated water trap was connected to the oxygenator exhaust port. Fifty patients were divided into six different groups with respect to oxygenator type and temperature range. Both arterial and venous blood gas samples were drawn from the CPB circuit at various temperatures. Alfa-stat corrected pCO2 values were obtained by running a linear regression for each group based on the arterial temperature and then correcting the PexCO2 accordingly. The accuracy of the six groups was found to be (±SD): ±4.3, ±4.8, ±5.7, ±1.0, ±3.7 and ±2.1%. These results suggest that oxygenator exhaust capnography is a simple, inexpensive and reliable method of estimating the PaCO2 in both adult and pediatric patients at all relevant temperatures.


Author(s):  
Tom Scott ◽  
Hanna van Waart ◽  
Xavier CE Vrijdag ◽  
David Mullins ◽  
Peter Mesley ◽  
...  

Arterial blood gas (ABG) measurements at both maximum depth and at re-surfacing prior to breathing have not previously been measured during freedives conducted to extreme depth in cold open-water conditions. An elite freediver was instrumented with a left radial arterial cannula connected to two sampling syringes through a low-volume splitting device. He performed two open-water dives to 60 metres depth (197', 7 atmospheres absolute pressure) in the constant weight with fins competition format. ABG samples were drawn at 60 metres (by a mixed-gas scuba diver), and again on re-surfacing before breathing. An immersed surface static apnea, of identical length to the dives and with ABG sampling at identical times, was also performed. Both dives lasted approximately two minutes. PaO2 increased during descent from an indicative baseline of 15.8 kPa (after hyperventilation and glossopharyngeal insufflation) to 42.8 and 33.3 kPa (dives one and two), and decreased precipitously (to 8.2 and 8.6 kPa) during ascent. PaCO2 also increased from a low indicative baseline of 2.8 kPa to 6.3 and 5.1 kPa on dives one and two; an increase not explained by metabolic production of CO2 alone since PaCO2 actually decreased during ascent (to 5.2 and 4.5 kPa). Surface static apnea caused a steady decrease in PaO2 and increase in PaCO2 without the inflections provoked by depth changes. Lung compression and expansion provoke significant changes in both PaO2 and PaCO2 during rapid descent and ascent on a deep freedive. These changes generally support predictive hypotheses and previous findings in less extreme settings.


1978 ◽  
Vol 44 (4) ◽  
pp. 534-537 ◽  
Author(s):  
M. Maskrey ◽  
P. P. Hoppe ◽  
O. S. Bamford

Five adult male dik-dik (Madoqua kirkii) were exposed in a climatic chamber to an air temperature of 45 degrees C. Measurements were made of rectal temperature (Tre) and respiratory frequency (f) and arterial blood samples taken before and during heat exposure were analyzed for pH, PCO2 and PO2. During exposure, Tre and f increased in all animals. In the first 80 min dik-dik displayed thermal tachypnea and minor changes in blood gases. Continued exposure lead to hyperpnea accompanied by a fall in PaCO2 and a rise in pH. PaCO2 at first fell and then increased toward or above control levels. The dik-dik did not display second phase breathing. This observation confirms that second phase breathing is not essential to the development of respiratory alkalosis. The main conclusion of the study is that the dik-dik, unlike another heat-adapted antelope, the wildebeest (Taylor, Robertshaw, and Hoffmann. Am. J. Physiol. 217:907–910, 1969), is unable to resist alkalosis during heat stress.


Sign in / Sign up

Export Citation Format

Share Document