The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay

2012 ◽  
Vol 113 (9) ◽  
pp. 1413-1422 ◽  
Author(s):  
Edward P. Debold ◽  
Thomas J. Longyear ◽  
Matthew A. Turner

Muscle fatigue from intense contractile activity is thought to result, in large part, from the accumulation of inorganic phosphate (Pi) and hydrogen ions (H+) acting to directly inhibit the function of the contractile proteins; however, the molecular basis of this process remain unclear. We used an in vitro motility assay and determined the effects of elevated H+ and Pi on the ability of myosin to bind to and translocate regulated actin filaments (RTF) to gain novel insights into the molecular basis of fatigue. At saturating Ca++, acidosis depressed regulated filament velocity ( VRTF) by ∼90% (6.2 ± 0.3 vs. 0.5 ± 0.2 μm/s at pH 7.4 and 6.5, respectively). However, the addition of 30 mM Pi caused VRTF to increase fivefold, from 0.5 ± 0.2 to 2.6 ± 0.3 μm/s at pH 6.5. Similarly, at all subsaturating Ca++ levels, acidosis slowed VRTF, but the addition of Pi significantly attenuated this effect. We also manipulated the [ADP] in addition to the [Pi] to probe which specific step(s) of cross-bridge cycle of myosin is affected by elevated H+. The findings are consistent with acidosis slowing the isomerization step between two actomyosin ADP-bound states. Because the state before this isomerization is most vulnerable to Pi rebinding, and the associated detachment from actin, this finding may also explain the Pi-induced enhancement of VRTF at low pH. These results therefore may provide a molecular basis for a significant portion of the loss of shortening velocity and possibly muscular power during fatigue.

2014 ◽  
Vol 116 (9) ◽  
pp. 1165-1174 ◽  
Author(s):  
Thomas J. Longyear ◽  
Matthew A. Turner ◽  
Jonathan P. Davis ◽  
Joseph Lopez ◽  
Brandon Biesiadecki ◽  
...  

Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca++-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity ( VRTF) at both maximal and submaximal Ca++ levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca++-sensitizing mutation in the Ca++-binding subunit of Tn (TnC) increased VRTF at submaximal Ca++ under acidic conditions but had no effect on VRTF at maximal Ca++ levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca++. Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate.


1994 ◽  
Vol 72 (11) ◽  
pp. 1400-1409 ◽  
Author(s):  
Joe R. Haeberle ◽  
Mark E. Hemric

The purpose of these studies was to evaluate the effects of the actin-binding proteins tropomyosin, caldesmon, and calponin on the activation of smooth muscle actomyosin by phosphorylation of the regulatory light chain of myosin (LC20), and to interpret these findings in the context of a two-state kinetic model for the cross-bridge cycle. An in vitro motility assay was used to broadly classify each regulatory protein according to whether it modulates the apparent on-rate for cross bridges (fapp) or the apparent off-rate (gapp). In addition to measuring actin-filament velocity, a method was developed to measure relative changes in the force exerted on actin filaments under isometric conditions. Based primarily on the results of these motility studies, a qualitative model is proposed in which LC20 phosphorylation, tropomyosin, and caldesmon all regulate fapp and calponin regulates gapp. The model predicts that the sensitivity of activation by LC20 phosphorylation is determined by tropomyosin, caldesmon, and calponin, whereas unloaded shortening velocity is regulated primarily by calponin.Key words: smooth muscle, caldesmon, calponin, tropomyosin, motility assay.


1995 ◽  
Vol 23 (3) ◽  
pp. 401S-401S ◽  
Author(s):  
Daren S. Jeffreys ◽  
Robert J. Eaton ◽  
Clive R. Bagshaw

Lab on a Chip ◽  
2018 ◽  
Vol 18 (20) ◽  
pp. 3196-3206 ◽  
Author(s):  
Till Korten ◽  
Elena Tavkin ◽  
Lara Scharrel ◽  
Vandana Singh Kushwaha ◽  
Stefan Diez

Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices.


2019 ◽  
Vol 10 ◽  
Author(s):  
Nasrin Bopp ◽  
Lisa-Mareike Scheid ◽  
Rainer H. A. Fink ◽  
Karl Rohr

Sign in / Sign up

Export Citation Format

Share Document