scholarly journals Role of nitric oxide-containing factors in the ventilatory and cardiovascular responses elicited by hypoxic challenge in isoflurane-anesthetized rats

2014 ◽  
Vol 116 (11) ◽  
pp. 1371-1381 ◽  
Author(s):  
James P. Mendoza ◽  
Rachael J. Passafaro ◽  
Santhosh M. Baby ◽  
Alex P. Young ◽  
James N. Bates ◽  
...  

Exposure to hypoxia elicits changes in mean arterial blood pressure (MAP), heart rate, and frequency of breathing (fr). The objective of this study was to determine the role of nitric oxide (NO) in the cardiovascular and ventilatory responses elicited by brief exposures to hypoxia in isoflurane-anesthetized rats. The rats were instrumented to record MAP, heart rate, and fr and then exposed to 90 s episodes of hypoxia (10% O2, 90% N2) before and after injection of vehicle, the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME), or the inactive enantiomer d-NAME (both at 50 μmol/kg iv). Each episode of hypoxia elicited a decrease in MAP, bidirectional changes in heart rate (initial increase and then a decrease), and an increase in fr. These responses were similar before and after injection of vehicle or d-NAME. In contrast, the hypoxia-induced decreases in MAP were attenuated after administration of l-NAME. The initial increases in heart rate during hypoxia were amplified whereas the subsequent decreases in heart rate were attenuated in l-NAME-treated rats. Finally, the hypoxia-induced increases in fr were virtually identical before and after administration of l-NAME. These findings suggest that NO factors play a vital role in the expression of the cardiovascular but not the ventilatory responses elicited by brief episodes of hypoxia in isoflurane-anesthetized rats. Based on existing evidence that NO factors play a vital role in carotid body and central responses to hypoxia in conscious rats, our findings raise the novel possibility that isoflurane blunts this NO-dependent signaling.

1981 ◽  
Vol 240 (3) ◽  
pp. H421-H429 ◽  
Author(s):  
G. Baccelli ◽  
R. Albertini ◽  
A. Del Bo ◽  
G. Mancia ◽  
A. Zanchetti

To evaluate whether sinoaortic afferents contribute to the hemodynamic pattern of fighting, cardiovascular changes associated with fighting were studied in cats before and after sinoaortic denervation. Sinoaortic denervation exaggerates the decrease in heart rate, cardiac output, and arterial pressure during immobile confrontation (hissing, staring but no movement). During nonsupportive fighting (fighting with forelimbs while lying on one side) and supportive fighting ( fighting while standing on four feet) sinoaortic denervation reduces the increase in heart rate and cardiac output, minimizes the mesenteric vasoconstriction, induces a fall in arterial blood pressure, but does not affect iliac vasoconstriction or vasodilatation. The hemodynamic pattern of fighting is similarly changed by temporary inactivation of carotid sinus baroreflexes by common carotid occlusion as by chronic section of sinoaortic nerves. It is concluded that sinoaortic reflexes play an important role in the cardiovascular patterns accompanying natural fighting. They favor cardiac action and allow a marked visceral vasoconstriction to occur, thus minimizing or preventing a fall in blood pressure during emotional behavior.


2003 ◽  
Vol 90 (2) ◽  
pp. 780-785 ◽  
Author(s):  
Shuang Chen ◽  
Sheng-Xing Ma

The purpose of these studies was to determine the role of gracile nucleus and the effects of l-arginine-derived nitric oxide (NO) synthesis in the nucleus on the cardiovascular responses to electroacupuncture (EA) stimulation of “Zusanli” (ST36). Arterial blood pressure and heart rate were monitored during EA stimulation of ST36 following microinjections of agents into gracile nucleus. EA ST36 produced depressor and bradycardiac responses in anesthetized Sprague-Dawley rats. The cardiovascular responses to EA ST36 were blocked by bilateral microinjection of lidocaine into gracile nucleus. Microinjection of l-arginine into gracile nucleus facilitated the hypotensive and bradycardiac responses to EA ST36. The cardiovascular responses to EA ST36 were attenuated by bilateral microinjection of neuronal NO synthase (nNOS) antisense oligos into gracile nucleus. Microinjection of nNOS sense oligos into gracile nucleus did not alter the cardiovascular response to EA ST36. The results demonstrate that a blockade of neuronal conduction in the gracile nucleus inhibits the cardiovascular responses to EA ST36. The hypotensive and bradycardiac responses to EA ST36 are modified by influences of l-arginine-derived NO synthesis in the gracile nucleus. We conclude that NO plays an important role in mediating the cardiovascular responses to EA ST36 through gracile nucleus.


1998 ◽  
Vol 274 (1) ◽  
pp. R181-R186 ◽  
Author(s):  
Hiroshi Murakami ◽  
Jun-Li Liu ◽  
Hirohito Yoneyama ◽  
Yasuhiro Nishida ◽  
Kenji Okada ◽  
...  

In previous studies we used N G-nitro-l-arginine (l-NNA) to investigate the role of nitric oxide (NO) in baroreflex control of heart rate (HR) and renal sympathetic nerve activity (RSNA).l-NNA increased resting mean arterial pressure (MAP), decreased HR, and did not change or slightly decreased RSNA. These changes complicated the assessment of the central effects of NO on the baroreflex control of HR and RSNA. Therefore, in the present study the effects of the relatively selective neuronal NO synthase inhibitor 7-nitroindazole (7-NI) on the baroreflex control of HR and RSNA were investigated in rabbits. Intraperitoneal injection of 7-NI (50 mg/kg) had no effect on resting HR, MAP, or RSNA. 7-NI significantly reduced the lower plateau of the HR-MAP baroreflex curve from 140 ± 4 to 125 ± 4 and from 177 ± 10 to 120 ± 9 beats/min in conscious and anesthetized preparations, respectively ( P < 0.05). In contrast, there was no significant difference in the RSNA-MAP curves before and after 7-NI administration in conscious or anesthetized preparations. These data suggest that blockade of neuronal NO synthase influences baroreflex control of HR but not of RSNA in rabbits.


2009 ◽  
pp. 57-67
Author(s):  
G Raffai ◽  
C Csekő ◽  
L Kocsis ◽  
L Dézsi ◽  
E Monos

Microgravity or simulated microgravity induces acute and chronic cardiovascular responses, whose mechanism is pivotal for understanding of physiological adaptation and pathophysiological consequences. We investigated hemodynamic responses of conscious Wistar rats to 45º head-down tilt (HDT) for 7 days. Arterial blood pressure (BP) was recorded by telemetry. Heart rate (HR), spectral properties and the spontaneous baroreflex sensitivity (sBRS) were calculated. Head-up tilt (HUT) was applied for 2 h before and after HDT to assess the degree of any possible cardiovascular deconditioning. Horizontal control BP and HR were 112.5±2.8 mmHg and 344.7±10 bpm, respectively. HDT elicited an elevation in BP and HR by 8.3 % and 8.8 %, respectively, in less than 1 h. These elevations in BP and HR were maintained for 2 and 3 days, respectively, and then normalized. Heart rate variability was unchanged, while sBRS was permanently reduced from the beginning of HDT (1.01±0.08 vs. 0.74±0.05 ms/mmHg). HUT tests before and after HDT resulted in BP elevations (6.9 vs. 11.6 %) and sBRS reduction (0.44 vs. 0.37 ms/mmHg), respectively. The pressor response during the post-HDT HUT test was accompanied by tachycardia (13.7 %). In conclusion, chronic HDT does not lead to symptoms of cardiovascular deconditioning. However the depressed sBRS and tachycardic response seen during the post-HDT HUT test may indicate disturbances in cardiovascular control.


1996 ◽  
Vol 81 (2) ◽  
pp. 578-585 ◽  
Author(s):  
G. M. Toney ◽  
S. W. Mifflin

In the present study, mediators of muscle contraction-evoked cardiovascular responses were examined in anesthetized rats. Rhythmic contractions of the hindlimb triceps surae muscle were produced by stimulating the tibial nerve (motor threshold 22.7 +/- 2.3 microA; n = 10) by using a 1 s on-1 s off pattern. Mean arterial pressure (MAP) and heart rate (HR) responses were recorded before and after 1) muscarinic receptor blockade (atropine sulfate; 2.0 mg/kg i.v., n = 5); 2) nitric oxide synthase inhibition with N omega-nitro-L-arginine methyl ester (L-NAME; 300 microM/kg i.v., n = 7); 3) beta-adrenoceptor blockade (propranolol; 2.0 mg/kg i.v., n = 10); and 4) bilateral adrenalectomy (n = 4). Rhythmic stimulation (10-s) significantly reduced MAP (P < 0.05) and elicited small decreases in HR that were abolished by neuromuscular blockade (n = 4). Atropine had no effect on MAP or HR responses to contraction. L-NAME increased baseline MAP (112.2 +/- 2.2 to 137.1 +/- 4.6 mmHg, P < 0.05) and attenuated contraction-evoked reductions of MAP (P < 0.05) without affecting HR. L-NAME-induced response deficits were mimicked in four separate rats by elevating MAP with phenylephrine (7–10 micrograms.kg-1.h-1 iv) to a level not different from that produced by L-NAME. Bilateral adrenalectomy and propranolol did not significantly affect HR responses but reduced contraction-evoked decreases in MAP from 14.3 +/- 2.9 to 7.7 +/- 2.2 mmHg and from 13.4 +/- 1.3 to 6.3 +/- 3.1 mmHg, respectively (P < 0.05). Baseline MAP was unchanged. We conclude that adrenal catecholamines, acting at beta-adrenoceptors, contribute significantly to the contraction-evoked depressor response in rats. No role for muscarinic receptors is evident in this response. Furthermore, attenuation of depressor responses to contraction after nitric oxide inhibition could result from an indirect effect of the pressor actions of L-NAME.


2011 ◽  
Vol 13 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Stephanie J Wehlage ◽  
Francine G Smith

To investigate the potential role of angiotensin II (Ang II) type 1 receptors (AT1Rs) as well as endogenously produced nitric oxide (NO) in regulating cardiovascular homeostasis during ontogeny, experiments were carried out in conscious lambs aged approximately 1 week ( N = 9) and 6 weeks ( N = 11). The arterial baroreflex control of heart rate (HR) was assessed before and after intravenous (IV) infusion of the selective AT1R antagonist, ZD 7155, before and after IV administration of the L-arginine analogue, NG-nitro-L-arginine methyl ester (L-NAME). In both groups, after ZD 7155 alone, mean arterial pressure decreased then increased after L-NAME. At 1 but not 6 weeks, HR decreased after ZD 7155 as well as after L-NAME. At 1 but not 6 weeks, there was a decrease in the HR range after ZD 7155 and after ZD 7155 + L-NAME, as compared to control. There was also a decrease in minimum HR after ZD 7155 + L-NAME at 1 week. These data provide new evidence that, together, Ang II and NO regulate cardiovascular homeostasis as well as the arterial baroreflex of HR early in life which may help to explain the activation of these two systems early in life.


Physiology ◽  
2000 ◽  
Vol 15 (5) ◽  
pp. 229-233 ◽  
Author(s):  
Harald M. Stauss ◽  
Pontus B. Persson

Blood pressure instability may promote cardiovascular morbidity. Recent data suggest a role of nitric oxide in stabilizing arterial blood pressure. A rise in blood pressure enhances endothelial shear stress and nitric oxide release. The resulting vasodilation antagonizes the initial increase in blood pressure. This system can respond within 2–10 seconds.


1985 ◽  
Vol 58 (5) ◽  
pp. 1659-1668 ◽  
Author(s):  
J. A. Neubauer ◽  
T. V. Santiago ◽  
M. A. Posner ◽  
N. H. Edelman

The role of a sudden increase in brain perfusion on ventral medullary surface pH (Vm pH) and minute ventilation (VI) was assessed in anesthetized peripherally chemo denervated cats. Acute hypertension (AH), produced by rapid inflation of an aortic balloon, and hypoxemia, produced with either inhalation of 1% CO (COHx) or inhalation of a hypoxic gas (HHx), were used to increase brain blood flow. In the AH group, increasing arterial blood pressure (from 122 +/- 3 to 180 +/- 5 mmHg) caused a rapid (less than 5 s) increase in Vm pH in every trial (n = 18). Associated with the mean peak increases in Vm pH (0.003 +/- 0.0004 pH units) were significant decrease in tidal volume (7–9%). In the COHx group, 17% HbCO caused a significant increase in Vm pH (0.003 +/- 0.0005 pH unit) and diminution of VI (9%). Further increases in HbCO caused a progressive ventral medullary acidosis and greater reductions in VI. The results from the HHX group were qualitatively similar to the COHx group; there was a biphasic response of Vm pH, i.e., an initial increase in Vm pH (0.008 +/- 0.001) followed by a steady decrease in Vm pH, with reductions in VI associated with both phases. We conclude that hyperperfusion, per se, produces an increase in Vm pH and a reduction in VI equivalent in magnitude to that predicted from the CO2 stimulus-response curve; the alkalotic shift in Vm pH and concomitant diminution in VI associated with mild hypoxia is probably related to an increase in ventral medullary perfusion; and the ventilatory depression associated with the medullary acidosis of moderate brain hypoxia must be attributed to another mechanism.


1994 ◽  
Vol 267 (1) ◽  
pp. R84-R88 ◽  
Author(s):  
M. Huang ◽  
M. L. Leblanc ◽  
R. L. Hester

The study tested the hypothesis that the increase in blood pressure and decrease in cardiac output after nitric oxide (NO) synthase inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) was partially mediated by a neurogenic mechanism. Rats were anesthetized with Inactin (thiobutabarbital), and a control blood pressure was measured for 30 min. Cardiac output and tissue flows were measured with radioactive microspheres. All measurements of pressure and flows were made before and after NO synthase inhibition (20 mg/kg L-NAME) in a group of control animals and in a second group of animals in which the autonomic nervous system was blocked by 20 mg/kg hexamethonium. In this group of animals, an intravenous infusion of norepinephrine (20-140 ng/min) was used to maintain normal blood pressure. L-NAME treatment resulted in a significant increase in mean arterial pressure in both groups. L-NAME treatment decreased cardiac output approximately 50% in both the intact and autonomic blocked animals (P < 0.05). Autonomic blockade alone had no effect on tissue flows. L-NAME treatment caused a significant decrease in renal, hepatic artery, stomach, intestinal, and testicular blood flow in both groups. These results demonstrate that the increase in blood pressure and decreases in cardiac output and tissue flows after L-NAME treatment are not dependent on a neurogenic mechanism.


Sign in / Sign up

Export Citation Format

Share Document