Nitric Oxide in the Gracile Nucleus Mediates Depressor Response to Acupuncture (ST36)

2003 ◽  
Vol 90 (2) ◽  
pp. 780-785 ◽  
Author(s):  
Shuang Chen ◽  
Sheng-Xing Ma

The purpose of these studies was to determine the role of gracile nucleus and the effects of l-arginine-derived nitric oxide (NO) synthesis in the nucleus on the cardiovascular responses to electroacupuncture (EA) stimulation of “Zusanli” (ST36). Arterial blood pressure and heart rate were monitored during EA stimulation of ST36 following microinjections of agents into gracile nucleus. EA ST36 produced depressor and bradycardiac responses in anesthetized Sprague-Dawley rats. The cardiovascular responses to EA ST36 were blocked by bilateral microinjection of lidocaine into gracile nucleus. Microinjection of l-arginine into gracile nucleus facilitated the hypotensive and bradycardiac responses to EA ST36. The cardiovascular responses to EA ST36 were attenuated by bilateral microinjection of neuronal NO synthase (nNOS) antisense oligos into gracile nucleus. Microinjection of nNOS sense oligos into gracile nucleus did not alter the cardiovascular response to EA ST36. The results demonstrate that a blockade of neuronal conduction in the gracile nucleus inhibits the cardiovascular responses to EA ST36. The hypotensive and bradycardiac responses to EA ST36 are modified by influences of l-arginine-derived NO synthesis in the gracile nucleus. We conclude that NO plays an important role in mediating the cardiovascular responses to EA ST36 through gracile nucleus.

2014 ◽  
Vol 116 (11) ◽  
pp. 1371-1381 ◽  
Author(s):  
James P. Mendoza ◽  
Rachael J. Passafaro ◽  
Santhosh M. Baby ◽  
Alex P. Young ◽  
James N. Bates ◽  
...  

Exposure to hypoxia elicits changes in mean arterial blood pressure (MAP), heart rate, and frequency of breathing (fr). The objective of this study was to determine the role of nitric oxide (NO) in the cardiovascular and ventilatory responses elicited by brief exposures to hypoxia in isoflurane-anesthetized rats. The rats were instrumented to record MAP, heart rate, and fr and then exposed to 90 s episodes of hypoxia (10% O2, 90% N2) before and after injection of vehicle, the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME), or the inactive enantiomer d-NAME (both at 50 μmol/kg iv). Each episode of hypoxia elicited a decrease in MAP, bidirectional changes in heart rate (initial increase and then a decrease), and an increase in fr. These responses were similar before and after injection of vehicle or d-NAME. In contrast, the hypoxia-induced decreases in MAP were attenuated after administration of l-NAME. The initial increases in heart rate during hypoxia were amplified whereas the subsequent decreases in heart rate were attenuated in l-NAME-treated rats. Finally, the hypoxia-induced increases in fr were virtually identical before and after administration of l-NAME. These findings suggest that NO factors play a vital role in the expression of the cardiovascular but not the ventilatory responses elicited by brief episodes of hypoxia in isoflurane-anesthetized rats. Based on existing evidence that NO factors play a vital role in carotid body and central responses to hypoxia in conscious rats, our findings raise the novel possibility that isoflurane blunts this NO-dependent signaling.


1995 ◽  
Vol 269 (4) ◽  
pp. R807-R813 ◽  
Author(s):  
T. Hirai ◽  
T. I. Musch ◽  
D. A. Morgan ◽  
K. C. Kregel ◽  
D. E. Claassen ◽  
...  

Recent studies have suggested that the interaction between the sympathetic nervous system and nitric oxide (NO) or nitrosyl factors may be an important means by which arterial blood pressure is regulated. We investigated whether NO synthase (NOS) inhibition modulates basal sympathetic nerve discharge (SND) in baroreceptor-innervated and -denervated, chloralose-anesthetized Sprague-Dawley rats. We recorded mean arterial pressure (MAP), renal SND, and lumbar SND before and after administration of the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg iv). Two minutes after L-NAME administration in baroreceptor-innervated rats, MAP increased (+23 +/- 3 mmHg), whereas renal (-45 +/- 6%, n = 7) and lumbar (-35 +/- 2%, n = 6) SND significantly decreased from control levels. These changes persisted for up to 20 min after L-NAME administration. In baroreceptor-denervated rats, L-NAME increased MAP (+40 +/- 6 mmHg) and decreased lumbar SND (n = 7) (-37 +/- 10% from control at 20 min post-L-NAME). In contrast, renal SND progressively increased (+33 +/- 8% at 20 min post-L-NAME) from control after L-NAME administration in baroreceptor-denervated rats (n = 7). These results demonstrate that NOS inhibition can produce nonuniform changes in SND in baroreceptor-denervated rats and suggest that endogenous nitrosyl factors provide tonic excitation to lumbar SND, whereas they provide a tonic restraint to renal SND.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ketab E. Al-Otaibi ◽  
Abdulrahman M. Al Elaiwi ◽  
Mohammad Tariq ◽  
Abdulrahman K. Al-Asmari

Contrast media- (CM-) induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN). Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg) with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg) was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg) through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels) and myeloperoxidase (MPO) and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.


1990 ◽  
Vol 258 (1) ◽  
pp. F41-F45
Author(s):  
P. C. Churchill ◽  
N. F. Rossi ◽  
M. C. Churchill ◽  
A. K. Bidani ◽  
F. D. McDonald

Both acute and chronic administration of cyclosporine A (CSA) lead to renal vasoconstriction, but the mechanism is not fully understood. The present studies were designed to explore the possible role of adenosine in acute CSA-induced renal vasoconstriction in rats. Six groups of anesthetized Sprague-Dawley rats were studied using standard clearance techniques: group 1 rats were controls; groups 2, 4, and 6 received CSA intravenously at 20, 30, and 40 mg.h-1.kg body wt-1, respectively; groups 3 and 5 were identical to groups 2 and 4 except that a priming injection of theophylline was given (56 mumol/kg body wt) and theophylline was included in the intravenous infusate (0.56 mumol.min-1.kg body wt-1). CSA produced acute and concentration-dependent reductions in renal plasma flow (left kidney) and in the clearances of p-aminohippuric acid and inulin (both kidneys). Except in group 6, these changes were observed in the absence of a decrease in arterial blood pressure, demonstrating that CSA produced an acute and concentration-dependent increase in renovascular resistance. Theophylline not only failed to block CSA-induced renal vasoconstriction, if anything, it potentiated it. Because theophylline is an adenosine receptor antagonist, these findings contradict the hypothesis that adenosine mediates acute CSA-induced renal vasoconstriction.


1990 ◽  
Vol 258 (1) ◽  
pp. R82-R86 ◽  
Author(s):  
Y. Kinoshita ◽  
F. G. Knox

Prostaglandin E2, when infused directly into the renal interstitium, enhances sodium reabsorption by the superficial proximal convoluted tubules of anesthetized Sprague-Dawley rats. The present study was designed to investigate the role of angiotensin II in the prostaglandin E2-induced stimulation of proximal sodium reabsorption. Micropuncture at the superficial late proximal tubule demonstrated a significant increase in the fractional reabsorption of sodium from 39.9 +/- 2.3% in control conditions to 51.8 +/- 3.0% (n = 9, P less than 0.01) during the renal interstitial infusion of prostaglandin E2. The stimulatory effect of prostaglandin E2 on proximal sodium reabsorption was markedly attenuated by pretreatment with saralasin. During intravenous saralasin infusion, prostaglandin E2 did not significantly change the fractional reabsorption of sodium from 42.2 +/- 5.8 to 45.4 +/- 6.0% (n = 7, NS). In summary, the stimulatory effect of renal interstitial infusion of prostaglandin E2 on proximal sodium reabsorption was attenuated by pretreatment with saralasin. Therefore renal interstitial infusion of prostaglandin E2 may enhance proximal sodium reabsorption, at least in part, through stimulation of angiotensin II production in the rat kidney.


1986 ◽  
Vol 61 (1) ◽  
pp. 271-279 ◽  
Author(s):  
C. L. Stebbins ◽  
J. C. Longhurst

We examined the contribution of bradykinin to the reflex hemodynamic response evoked by static contraction of the hindlimb of anesthetized cats. During electrical stimulation of ventral roots L7 and S1, we compared the cardiovascular responses to hindlimb contraction before and after the following interventions: inhibition of converting enzyme (kininase II) with captopril (3–4 mg/kg, n = 6); inhibition of kallikrein activity with aprotinin (Trasylol, 20,000–30,000 KIU/kg, n = 8); and injection of carboxypeptidase B (500–750 U/kg, n = 7). Treatment with captopril augmented the rise in mean arterial blood pressure and maximal time derivative of pressure (dP/dt) caused by static contraction from 21 +/- 3 to 39 +/- 7 mmHg and 1,405 +/- 362 to 2,285 +/- 564 mmHg/s, respectively. Aprotinin attenuated the contraction-induced rise in mean arterial blood pressure (28 +/- 4 to 9 +/- 2 mmHg) and maximal dP/dt (1,284 +/- 261 to 469 +/- 158 mmHg/s). Carboxypeptidase B reduced the cardiovascular response to static contraction. Thus the mean arterial blood pressure response was decreased from 36 +/- 12 to 24 +/- 11 mmHg, maximal dP/dt from 1,618 +/- 652 to 957 +/- 392 mmHg/s, and heart rate from 12 +/- 2 to 7 +/- 1 beats/min. These data suggest that stimulation of muscle afferents by bradykinin contributes to a portion of the reflex cardiovascular response to static contraction.


1991 ◽  
Vol 260 (4) ◽  
pp. E608-E612
Author(s):  
M. Michalkiewicz ◽  
J. M. Connors ◽  
L. J. Huffman ◽  
Z. Pietrzyk ◽  
G. A. Hedge

It has been shown that the compensatory growth of the thyroid gland and the compensatory increase in hormone secretion that occur after hemithyroidectomy are preceded by a dramatic increase in thyroid blood flow (BF). These alterations in the thyroid remnant may be due to the concomitant increase in plasma thyrotropin (TSH) concentrations. It has been suggested, however, that the compensatory thyroid growth may also involve a neural reflex. In this study we have investigated the role of TSH in mediating the compensatory alterations in thyroid BF and mass after subtotal thyroidectomy. Male Sprague-Dawley rats were anesthetized with ether for surgical or sham hemithyroidectomy. One-half of the hemithyroidectomized rats (HTX) received no further treatment; in the other one-half of the HTX rats (Clamp), plasma TSH levels were maintained at levels comparable with those in sham-operated animals by initiating constant thyroid hormone replacement beginning at the time of hemithyroidectomy. Plasma samples for TSH, 3,5,3'-triiodothyronine, and thyroxine radioimmunoassays were obtained 2, 7, 14, and 21 days after surgery. Thyroid BF was determined at 1, 2, and 3 wk after surgery by the reference sample version of the radioactive microsphere technique (141Ce, 15 microns diameter). Plasma TSH levels and thyroid lobe weight were significantly elevated in HTX rats but not in Clamp rats. Thyroid BF was markedly increased in HTX rats. Thyroid BF was also significantly increased in Clamp rats despite the suppression of the rise in plasma TSH concentration, but this increase was less than that in HTX rats. Neither hemithyroidectomy nor Clamp treatments had any effect on arterial blood pressure or BF to other tissues (e.g., kidney).(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
Vol 301 (5) ◽  
pp. R1529-R1539 ◽  
Author(s):  
Annie M. Whitaker ◽  
Jesse K. Sulzer ◽  
Patricia E. Molina

Acute alcohol intoxication (AAI) attenuates the AVP response to hemorrhage, contributing to impaired hemodynamic counter-regulation. This can be restored by central cholinergic stimulation, implicating disrupted signaling regulating AVP release. AVP is released in response to hemorrhage and hyperosmolality. Studies have demonstrated nitric oxide (NO) to play an inhibitory role on AVP release. AAI has been shown to increase NO content in the paraventricular nucleus. We hypothesized that the attenuated AVP response to hemorrhage during AAI is the result of increased central NO inhibition. In addition, we predicted that the increased NO tone during AAI would impair the AVP response to hyperosmolality. Conscious male Sprague-Dawley rats (300–325 g) received a 15-h intragastric infusion of alcohol (2.5 g/kg + 300 mg·kg−1·h−1) or dextrose prior to a 60-min fixed-pressure hemorrhage (∼40 mmHg) or 5% hypertonic saline infusion (0.05 ml·kg−1·min−1). AAI attenuated the AVP response to hemorrhage, which was associated with increased paraventricular NO content. In contrast, AAI did not impair the AVP response to hyperosmolality. This was accompanied by decreased paraventricular NO content. To confirm the role of NO in the alcohol-induced inhibition of AVP release during hemorrhage, the nitric oxide synthase inhibitor, nitro-l-arginine methyl ester (l-NAME; 250 μg/5 μl), was administered centrally prior to hemorrhage. l-NAME did not further increase AVP levels during hemorrhage in dextrose-treated animals; however, it restored the AVP response during AAI. These results indicate that AAI impairs the AVP response to hemorrhage, while not affecting the response to hyperosmolality. Furthermore, these data demonstrate that the attenuated AVP response to hemorrhage is the result of augmented central NO inhibition.


2021 ◽  
Author(s):  
Burçin Altınbaş ◽  
Gökcen Guvenc Bayram ◽  
Murat Yalcin

Abstract Centrally injected some prostaglandins (PG) and orexin (OX) produce similar cardiovascular responses. We have recently reported that both central cyclooxygenase (COX) and central lipoxygenase (LOX) enzymes mediate the cardiovascular effects of OX. In the current study, we aimed to investigate the mediating effects of thromboxane (TX) A2, PGD, PGE, and PGF2a, as COX pathway subproducts known to be active in cardiovascular control, on cardiovascular responses elicited by OX. Intracerebroventricular (i.c.v.) injection of OX increased cardiovascular levels in normotensive male Sprague Dawley rats. Moreover, central pretreatment with the TXA2 synthesis inhibitor furegrelate, PGF2α receptor antagonist, PGF2α-dimethylamine, PGE, and PGD receptor antagonist AH6809 partially attenuated the centrally administered OX -induced pressor and tachycardic cardiovascular responses in rats. In conclusion, our results show that i.c.v. injection of OX increases blood pressure and heart rate. Moreover, TXA2, PGF2α, PGE, and PGD mediate, at least in part, the centrally applied OX -evoked pressor and tachycardic responses. The results suggest that centrally injected OX -evoked pressor and tachycardia responses may also be mediated by arachidonic acid metabolites other than TXA2, PGF2α, PGE, and PGD.


2012 ◽  
Vol 113 (4) ◽  
pp. 557-565 ◽  
Author(s):  
Daniel M. Hirai ◽  
Steven W. Copp ◽  
Scott K. Ferguson ◽  
Clark T. Holdsworth ◽  
Danielle J. McCullough ◽  
...  

Exercise training induces multiple adaptations within skeletal muscle that may improve local O2delivery-utilization matching (i.e., Po2mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po2mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary ( n = 18) or progressive treadmill exercise training ( n = 10; 5 days/wk, 6–8 wk, final workload of 60 min/day at 35 m/min, −14% grade) groups. Po2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and NG-nitro-l-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (V̇o2peak) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml·kg−1·min−1, respectively; P < 0.05). Exercise-trained rats had significantly slower Po2mv fall throughout contractions (τ1; time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ1to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ1between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po2mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations.


Sign in / Sign up

Export Citation Format

Share Document