scholarly journals Short-term resistance training with instability reduces impairment in V wave and H reflex in individuals with Parkinson’s disease

2019 ◽  
Vol 127 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Carla Silva-Batista ◽  
Jumes Leopoldino de Oliveira Lira ◽  
Fabian J. David ◽  
Daniel M. Corcos ◽  
Eugenia Casella Tavares Mattos ◽  
...  

This study had two objectives: 1) to compare the effects of 3 wk of resistance training (RT) and resistance training with instability (RTI) on evoked reflex responses at rest and during maximal voluntary isometric contraction (MVIC) of individuals with Parkinson’s disease (PD) and 2) to determine the effectiveness of RT and RTI in moving values of evoked reflex responses of individuals with PD toward values of age-matched healthy control subjects (HCs) ( z-score analysis). Ten individuals in the RT group and 10 in the RTI group performed resistance exercises twice a week for 3 wk, but only the RTI group included unstable devices. The HC group ( n = 10) were assessed at pretest only. Evoked reflex responses at rest (H reflex and M wave) and during MVIC [supramaximal M-wave amplitude (Msup) and supramaximal V-wave amplitude (Vsup)] of the plantar flexors were assessed before and after the experimental protocol. From pretraining to posttraining, only RTI increased ratio of maximal H-reflex amplitude to maximal M-wave amplitude at rest (Hmax/Mmax), Msup, Vsup/Msup, and peak torque of the plantar flexors ( P < 0.05). At posttraining, RTI was more effective than RT in increasing resting Hmax and Vsup and in moving these values to those observed in HCs ( P < 0.05). We conclude that short-term RTI is more effective than short-term RT in modulating H-reflex excitability and in increasing efferent neural drive, approaching average values of HCs. Thus short-term RTI may cause positive changes at the spinal and supraspinal levels in individuals with PD. NEW & NOTEWORTHY Maximal H-reflex amplitude (Hmax) at rest and efferent neural drive [i.e., supramaximal V-wave amplitude (Vsup)] to skeletal muscles during maximal contraction are impaired in individuals with Parkinson’s disease. Short-term resistance training with instability was more effective than short-term resistance training alone in increasing Hmax and Vsup of individuals with Parkinson’s disease, reaching the average values of healthy control subjects.

2002 ◽  
Vol 34 (5) ◽  
pp. S116 ◽  
Author(s):  
P Aagaard ◽  
E B. Simonsen ◽  
J L. Andersen ◽  
S P. Magnusson ◽  
P Dyhre-Poulsen

2002 ◽  
Vol 92 (6) ◽  
pp. 2309-2318 ◽  
Author(s):  
Per Aagaard ◽  
Erik B. Simonsen ◽  
Jesper L. Andersen ◽  
Peter Magnusson ◽  
Poul Dyhre-Poulsen

Combined V-wave and Hoffmann (H) reflex measurements were performed during maximal muscle contraction to examine the neural adaptation mechanisms induced by resistance training. The H-reflex can be used to assess the excitability of spinal α-motoneurons, while also reflecting transmission efficiency (i.e., presynaptic inhibition) in Ia afferent synapses. Furthermore, the V-wave reflects the overall magnitude of efferent motor output from the α-motoneuron pool because of activation from descending central pathways. Fourteen male subjects participated in 14 wk of resistance training that involved heavy weight-lifting exercises for the muscles of the leg. Evoked V-wave, H-reflex, and maximal M-wave (Mmax) responses were recorded before and after training in the soleus muscle during maximal isometric ramp contractions. Maximal isometric, concentric, and eccentric muscle strength was measured by use of isokinetic dynamometry. V-wave amplitude increased ∼50% with training ( P < 0.01) from 3.19 ± 0.43 to 4.86 ± 0.43 mV, or from 0.308 ± 0.048 to 0.478 ± 0.034 when expressed relative to Mmax (± SE). H-reflex amplitude increased ∼20% ( P < 0.05) from 5.37 ± 0.41 to 6.24 ± 0.49 mV, or from 0.514 ± 0.032 to 0.609 ± 0.025 when normalized to Mmax. In contrast, resting H-reflex amplitude remained unchanged with training (0.503 ± 0.059 vs. 0.499 ± 0.063). Likewise, no change occurred in Mmax (10.78 ± 0.86 vs. 10.21 ± 0.66 mV). Maximal muscle strength increased 23–30% ( P < 0.05). In conclusion, increases in evoked V-wave and H-reflex responses were observed during maximal muscle contraction after resistance training. Collectively, the present data suggest that the increase in motoneuronal output induced by resistance training may comprise both supraspinal and spinal adaptation mechanisms (i.e., increased central motor drive, elevated motoneuron excitability, reduced presynaptic inhibition).


2012 ◽  
Vol 112 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Carolina Vila-Chã ◽  
Deborah Falla ◽  
Miguel Velhote Correia ◽  
Dario Farina

This study examined the effects of 3 wk of either endurance or strength training on plasticity of the neural mechanisms involved in the soleus H reflex and V wave. Twenty-five sedentary healthy subjects were randomized into an endurance group ( n = 13) or strength group ( n = 12). Evoked V-wave, H-reflex, and M-wave recruitment curves, maximal voluntary contraction (MVC), and time-to-task-failure (isometric contraction at 40% MVC) of the plantar flexors were recorded before and after training. Following strength training, MVC of the plantar flexors increased by 14.4 ± 5.2% in the strength group ( P < 0.001), whereas time-to-task-failure was prolonged in the endurance group (22.7 ± 17.1%; P < 0.05). The V wave-to-maximal M wave (V/Mmax) ratio increased significantly (55.1 ± 28.3%; P < 0.001) following strength training, but the maximal H wave-to-maximal M wave (Hmax/Mmax) ratio remained unchanged. Conversely, in the endurance group the V/Mmax ratio was not altered, whereas the Hmax/Mmax ratio increased by 30.8 ± 21.7% ( P < 0.05). The endurance training group also displayed a reduction in the H-reflex excitability threshold while the H-reflex amplitude on the ascending limb of the recruitment curve increased. Strength training only elicited a significant decrease in H-reflex excitability threshold, while H-reflex amplitudes over the ascending limb remained unchanged. These observations indicate that the H-reflex pathway is strongly involved in the enhanced endurance resistance that occurs following endurance training. On the contrary, the improvements in MVC following strength training are likely attributed to increased descending drive and/or modulation in afferents other than Ia afferents.


2007 ◽  
Vol 97 (1) ◽  
pp. 596-603 ◽  
Author(s):  
S. Racinais ◽  
O. Girard ◽  
J. P. Micallef ◽  
S. Perrey

The main purpose of this study was to investigate the modulations in H-reflex and V-wave responses (spinal loop properties) induced by prolonged locomotion activities. The second purpose was to compare the development of central fatigue between continuous and intermittent running modes. Eleven males randomly performed two 90-min running exercises either continuously (CONT, first ventilatory threshold) or intermittently (INT, 150 s at a velocity 20% higher than that during CONT/30 s of recovery). Neuromuscular tests of the plantar flexors [including M-wave and H-reflex at rest and M-wave and V-wave during maximal voluntary contraction (MVC)] were performed before and 5 and 30 min after the running exercises. During MVC, the torque significantly decreased ( P < 0.05) from preexercise to 5 and 30 min postexercise (−11 and −9%, respectively), as did the RMS/M ratio (−11 and −13%, respectively) and the V/M ratio (−19 and −37%, respectively) for the soleus muscle. At rest, the H/M ratio also decreased significantly ( P < 0.001) from preexercise to 5 and 30 min postexercise (−61 and −55%, respectively). Last, no difference in the alteration of spinal loop properties was noted between CONT and INT. In conclusion, the results regarding H-reflex and V-wave suggest for the first time a modulation in spinal loop properties after prolonged running.


2005 ◽  
Vol 94 (5) ◽  
pp. 3555-3562 ◽  
Author(s):  
Julien Duclay ◽  
Alain Martin

This study was designed to investigate the modulations of H-reflex and V-wave responses during passive and maximal active dynamic actions. Experiments were performed on 16 healthy males [age: 24 ± 4 (SD) yr]. Maximal H-reflexes ( Hmax) and M-waves ( MmaxR) were evoked at the same muscle length during passive isometric, shortening and lengthening actions and during maximal voluntary isometric, concentric, and eccentric plantar-flexion. In all contraction types, supra-maximal stimulus intensity was used to evoke the superimposed maximal M wave ( MmaxA) and V wave ( V) of the soleus muscle. At rest, the Hmax/ MmaxR ratio was significantly reduced during lengthening with respect to isometric and shortening actions ( P < 0.05). For each action type, the ratio between H reflex superimposed to the contraction ( Hsup) and MmaxA was not different from Hmax/ MmaxR ratio. When plantar flexors were maximally voluntary activated, the Hsup/ MmaxA ratio was still lower during eccentric contraction as compared with isometric and concentric efforts (0.33 ± 0.03 vs. 0.47 ± 0.02 and 0.50 ± 0.03, P < 0.001), whereas V/ MmaxA ratios were similar for all contraction types (isometric 0.26 ± 0.02; concentric 0.23 ± 0.03, and eccentric 0.24 ± 0.02; P > 0.05). The V/ MmaxA ratio was significantly lower than Hsup/ MmaxA during isometric and concentric MVC ( P < 0.001). No difference was observed between V/ MmaxA and Hsup/ MmaxA ratios during eccentric efforts. The H-reflex modulations, present during lengthening actions, were mainly attributed to presynaptic inhibition of Ia afferents and to homosynaptic postactivation depression. Results on V wave and H reflex suggest that during eccentric MVC, the spinal loop is specifically modulated by the supra-spinal centers and/or neural mechanisms at spinal level.


2014 ◽  
Vol 46 ◽  
pp. 175
Author(s):  
Bruno Fischer ◽  
Ricardo Oliveira ◽  
Tácio Santos ◽  
Tailce Leite ◽  
Samuel Vidal ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 959
Author(s):  
Konstantin G. Heimrich ◽  
Thomas Lehmann ◽  
Peter Schlattmann ◽  
Tino Prell

Recent evidence suggests that the vagus nerve and autonomic dysfunction play an important role in the pathogenesis of Parkinson’s disease. Using heart rate variability analysis, the autonomic modulation of cardiac activity can be investigated. This meta-analysis aims to assess if analysis of heart rate variability may indicate decreased parasympathetic tone in patients with Parkinson’s disease. The MEDLINE, EMBASE and Cochrane Central databases were searched on 31 December 2020. Studies were included if they: (1) were published in English, (2) analyzed idiopathic Parkinson’s disease and healthy adult controls, and (3) reported at least one frequency- or time-domain heart rate variability analysis parameter, which represents parasympathetic regulation. We included 47 studies with 2772 subjects. Random-effects meta-analyses revealed significantly decreased effect sizes in Parkinson patients for the high-frequency spectral component (HFms2) and the short-term measurement of the root mean square of successive normal-to-normal interval differences (RMSSD). However, heterogeneity was high, and there was evidence for publication bias regarding HFms2. There is some evidence that a more advanced disease leads to an impaired parasympathetic regulation. In conclusion, short-term measurement of RMSSD is a reliable parameter to assess parasympathetically impaired cardiac modulation in Parkinson patients. The measurement should be performed with a predefined respiratory rate.


1997 ◽  
Vol 12 (3) ◽  
pp. 306-314 ◽  
Author(s):  
Viktor Müller ◽  
Bettina Mohr ◽  
Regina Rosin ◽  
Friedemann Pulvermüller ◽  
Friedemann Müller ◽  
...  

Brain ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 137-154 ◽  
Author(s):  
J. R. BAKER ◽  
N. J. DAVEY ◽  
P. H. ELLAWAY ◽  
C. L. FRIEDILAND

2018 ◽  
Vol 11 (4) ◽  
pp. 867-874 ◽  
Author(s):  
Haidar Salimi Dafsari ◽  
Luisa Weiß ◽  
Monty Silverdale ◽  
Alexandra Rizos ◽  
Prashanth Reddy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document