scholarly journals Mechanisms of active laryngeal closure during noninvasive intermittent positive pressure ventilation in nonsedated lambs

2008 ◽  
Vol 105 (5) ◽  
pp. 1406-1412 ◽  
Author(s):  
Bianca Roy ◽  
Nathalie Samson ◽  
François Moreau-Bussière ◽  
Alain Ouimet ◽  
Dominique Dorion ◽  
...  

The present study stems from our recent demonstration (Moreau-Bussiere F, Samson N, St-Hilaire M, Reix P, Lafond JR, Nsegbe E, Praud JP. J Appl Physiol 102: 2149–2157, 2007) that a progressive increase in nasal intermittent positive pressure ventilation (nIPPV) leads to active glottal closure in nonsedated, newborn lambs. The aim of the study was to determine whether the mechanisms involved in this glottal narrowing during nIPPV originate from upper airway receptors and/or from bronchopulmonary receptors. Two groups of newborn lambs were chronically instrumented for polysomnographic recording: the first group of five lambs underwent a two-step bilateral thoracic vagotomy using video-assisted thoracoscopic surgery (bilateral vagotomy group), while the second group, composed of six lambs, underwent chronic laryngotracheal separation (isolated upper airway group). A few days later, polysomnographic recordings were performed to assess glottal muscle electromyography during step increases in nIPPV (volume control mode). Results show that active glottal narrowing does not develop when nIPPV is applied on the upper airways only, and that this narrowing is prevented by bilateral vagotomy when nIPPV is applied on intact airways. In conclusion, active glottal narrowing in response to increasing nIPPV originates from bronchopulmonary receptors.

2007 ◽  
Vol 102 (6) ◽  
pp. 2149-2157 ◽  
Author(s):  
François Moreau-Bussière ◽  
Nathalie Samson ◽  
Marie St-Hilaire ◽  
Philippe Reix ◽  
Joëlle Rouillard Lafond ◽  
...  

Although endoscopic studies in adult humans have suggested that laryngeal closure can limit alveolar ventilation during nasal intermittent positive pressure ventilation (nIPPV), there are no available data regarding glottal muscle activity during nIPPV. In addition, laryngeal behavior during nIPPV has not been investigated in neonates. The aim of the present study was to assess laryngeal muscle response to nIPPV in nonsedated newborn lambs. Nine newborn lambs were instrumented for recording states of alertness, electrical activity [electromyograph (EMG)] of glottal constrictor (thyroarytenoid, TA) and dilator (cricothyroid, CT) muscles, EMG of the diaphragm (Dia), and mask and tracheal pressures. nIPPV in pressure support (PS) and volume control (VC) modes was delivered to the lambs via a nasal mask. Results show that increasing nIPPV during wakefulness and quiet sleep led to a progressive disappearance of Dia and CT EMG and to the appearance and subsequent increase in TA EMG during inspiration, together with an increase in trans-upper airway pressure (TUAP). On rare occasions, transmission of nIPPV through the glottis was prevented by complete, active glottal closure, a phenomenon more frequent during active sleep epochs, when irregular bursts of TA EMG were observed. In conclusion, results of the present study suggest that active glottal closure develops with nIPPV in nonsedated lambs, especially in the VC mode. Our observations further suggest that such closure can limit lung ventilation when raising nIPPV in neonates.


Author(s):  
Bayane Sabsabi ◽  
Ava Harrison ◽  
Laura Banfield ◽  
Amit Mukerji

Objective The study aimed to systematically review and analyze the impact of nasal intermittent positive pressure ventilation (NIPPV) versus continuous positive airway pressure (CPAP) on apnea of prematurity (AOP) in preterm neonates. Study Design In this systematic review and meta-analysis, experimental studies enrolling preterm infants comparing NIPPV (synchronized, nonsynchronized, and bi-level) and CPAP (all types) were searched in multiple databases and screened for the assessment of AOP. Primary outcome was AOP frequency per hour (as defined by authors of included studies). Results Out of 4,980 articles identified, 18 studies were included with eight studies contributing to the primary outcome. All studies had a high risk of bias, with significant heterogeneity in definition and measurement of AOP. There was no difference in AOPs per hour between NIPPV versus CPAP (weighted mean difference = −0.19; 95% confidence interval [CI]: −0.76 to 0.37; eight studies, 456 patients). However, in a post hoc analysis evaluating the presence of any AOP (over varying time periods), the pooled odds ratio (OR) was lower with NIPPV (OR: 0.46; 95% CI: 0.32–0.67; 10 studies, 872 patients). Conclusion NIPPV was not associated with decrease in AOP frequency, although demonstrated lower odds of developing any AOP. However, definite recommendations cannot be made based on the quality of the published evidence. Key Points


1985 ◽  
Vol 58 (5) ◽  
pp. 1489-1495 ◽  
Author(s):  
J. P. Farber

The suckling opossum exhibits an expiration-phased discharge in abdominal muscles during positive-pressure breathing (PPB); the response becomes apparent, however, only after the 3rd-5th wk of postnatal life. The purpose of this study was to determine whether the early lack of activation represented a deficiency of segmental outflow to abdominal muscles or whether comparable effects were observed in cranial outflows to muscles of the upper airways due to immaturity of afferent and/or supraspinal pathways. Anesthetized suckling opossums between 15 and 50 days of age were exposed to PPB; electromyogram (EMG) responses in diaphragm and abdominal muscles were measured, along with EMG of larynx dilator muscles and/or upper airway resistance. In animals older than approximately 30 days of age, the onset of PPB was associated with a prolonged expiration-phased EMG activation of larynx dilator muscles and/or decreased upper airway resistance, along with expiratory recruitment of the abdominal muscle EMG. These effects persisted as long as the load was maintained. Younger animals showed only those responses related to the upper airway; in fact, activation of upper airway muscles during PPB could be associated with suppression of the abdominal motor outflow. After unilateral vagotomy, abdominal and upper airway motor responses to PPB were reduced. The balance between PPB-induced excitatory and inhibitory or disfacilitory influences from the supraspinal level on abdominal motoneurons and/or spinal processing of information from higher centers may shift toward net excitation as the opossum matures.


Sign in / Sign up

Export Citation Format

Share Document