scholarly journals An Index of Topographic Normality in Rat Somatosensory Cortex: Application to a Sciatic Nerve Crush Model

2002 ◽  
Vol 88 (3) ◽  
pp. 1339-1351 ◽  
Author(s):  
Scott Barbay ◽  
Eric K. Peden ◽  
Gerald Falchook ◽  
Randolph J. Nudo

Previous studies have demonstrated that peripheral denervation of the skin is reflected in the CNS as a reorganization of somatotopic representations. In cases in which peripheral nerve regeneration occurs there is a gradual reactivation of cortex by novel receptive fields that is reversed as regenerated nerves reestablish connections with the original skin surface. Functional recovery appears to depend on the pattern in which somatotopic organization in the cortex is reestablished. The relationship between functional recovery and cortical topography is not precise, however, since the descriptions of postinjury representations in the cortex have been largely descriptive and not quantitative. The purpose of this study was to derive an index to quantify deviations from normal somatotopic organization in the somatosensory cortex. Multiunit recordings of cutaneous representations in the somatosensory cortex (S1) of the rat were defined using Semmes-Weinstein monofilaments to stimulate the skin over the distal hindlimb of the rat 2 and 4 months after a sciatic nerve crush. To derive a sensitive index of topography, the sciatic nerve crush was selected as the injury model since nerve regeneration following crush injuries has been reported to reinstate preinjury cortical topography. Group comparisons were made with an intact control group. The results show that there were subtle, but significant differences in topography between rats with a regenerated sciatic nerve and normal rats. In addition, average thresholds for evoking cortical responses were higher than normal (but within normal range) 2 and 4 months after the crush. These results demonstrate that the index of topography derived for this study can reveal deviations that may not be distinguishable from normal topography when based on qualitative descriptions.

2020 ◽  
Vol 209 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Zohreh Jahromi ◽  
Fahimeh Mohammadghasemi ◽  
Farshad Moharrami Kasmaie ◽  
Arash Zaminy

Peripheral nerve injury is a common clinical issue induced by trauma, tumor, and damage caused by treatment. Such factors create chemical and inflammatory alterations at the injury site, which increase nerve deterioration. Thus, minimizing these modifications can lead to nerve protection after injury. The present study sought to evaluate the possible improvement in nerve regeneration and enhancement of functional outcomes by cinnamaldehyde (Cin) administration following sciatic nerve crush in a rat model. Rats (n = 48) were distributed into 6 groups, including sham, injury, DMSO (vehicle group), and Cin groups (10, 30, and 90 mg/kg/day). Using small hemostatic forceps, crush injury was induced in the left sciatic nerve. Thereafter, Cin was administered for 28 successive days. Weekly records were taken for sciatic functional index (SFI) measurements. Further assessments including electrophysiological and histomorphometric evaluations, gastrocnemius muscle wet weight measurements, and estimation of the serum total oxidant status were performed. According to the results, Cin could accelerate sciatic nerve recovery after crush injury, and the dose of 30 mg/kg/day of Cin had better impacts on SFI recovery, muscle mass ratio, and myelin content. The current research demonstrated that Cin positively affects peripheral nerve restoration. Therefore, Cin therapy could be considered as a potential treatment method for peripheral nerve regeneration and its functional recovery. However, more investigations are required to further validate the study results and evaluate the optimal dose of Cin.


2020 ◽  
Vol 11 (3) ◽  
pp. 332-344
Author(s):  
Letícia Lemes Sasso ◽  
Luana Gabriel de Souza ◽  
Carlos Eduardo Girasol ◽  
Alexandre Márcio Marcolino ◽  
Rinaldo Roberto de Jesus Guirro ◽  
...  

Objective: The aim of the study was to perform a literature review to analyze the effect of photobiomodulation in experimental studies on peripheral nerve regeneration after sciatic nerve crush injury in rodents. Methods: A bibliographic search was performed in the electronic databases, including MEDLINE (PubMed), SCOPUS, and SciELO, from 2008 to 2018. Results: A total of 1912 articles were identified in the search, and only 19 fulfilled all the inclusion criteria. Along with the parameters most found in the manuscripts, the most used wavelengths were 660 nm and 830 nm, power of 30 and 40 mW, and energy density of 4 and 10 J/cm2 . For total energy throughout the intervention period, the lowest energy found with positive effects was 0.70 J, and the highest 1.141 J. Seventeen studies reported positive effects on nerve regeneration. The variables selected to analyze the effect were: Sciatic Functional Index (SFI), Static Sciatic Index (SSI), morphometric, morphological, histological, zymographic, electrophysiological, resistance mechanics and range of motion (ROM). The variety of parameters used in the studies demonstrated that there is yet no pre-determined protocol for treating peripheral nerve regeneration. Only two studies by different authors used the same power, energy density, beam area, and power density. Conclusion: It was concluded that the therapeutic window of the photobiomodulation presents a high variability of parameters with the wavelength (632.8 to 940 nm), power (5 to 170 mW) and energy density (3 to 280 J /cm2 ), promoting nerve regeneration through the expression of cytokines and growth factors that aid in modulating the inflammatory process, improving morphological aspects, restoring the functionality to the animals in a brief period.


2018 ◽  
Vol 57 (5) ◽  
pp. 821-828 ◽  
Author(s):  
Tao Lin ◽  
Shuai Qiu ◽  
Liwei Yan ◽  
Shuang Zhu ◽  
Canbin Zheng ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e103348 ◽  
Author(s):  
Chau-Zen Wang ◽  
Yi-Jen Chen ◽  
Yan-Hsiung Wang ◽  
Ming-Long Yeh ◽  
Mao-Hsiung Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document