Intrinsic Frequency Tuning in ELL Pyramidal Cells Varies Across Electrosensory Maps

2008 ◽  
Vol 99 (5) ◽  
pp. 2641-2655 ◽  
Author(s):  
W. Hamish Mehaffey ◽  
Leonard Maler ◽  
Ray W. Turner

The tuning of neuronal responsiveness to specific stimulus frequencies is an important computation across many sensory modalities. The weakly electric fish Apteronotus leptorhynchus detects amplitude modulations of a self-generated quasi-sinusoidal electric organ discharge to sense its environment. These fish have to parse a complicated electrosensory environment with a wide range of possible frequency content. One solution has been to create multiple representations of the sensory input across distinct maps in the electrosensory lateral line lobe (ELL) that participate in distinct behavioral functions. E- and I-type pyramidal cells in the ELL that process sensory input further exhibit a preferred range of stimulus frequencies in relation to the different behaviors and sensory maps. We tested the hypothesis that variations in the intrinsic spiking mechanism of E- and I-type pyramidal cells contribute to map-specific frequency tuning. We find that E-cells exhibit a systematic change in their intrinsic spike characteristics and frequency tuning across sensory maps, whereas I-cells are constant in both spike characteristics and frequency tuning. As frequency tuning becomes more high-pass in E-cells, the refractory variables of spike half-width and afterhyperpolarization magnitude increase, spike threshold increases, adaptation becomes faster, and the gain of the spiking response decreases. These findings indicate that frequency tuning across sensory maps in the ELL is supported by differences in the intrinsic spike characteristics of pyramidal cells, revealing a link between cellular biophysical properties and signal processing in sensory maps with defined behavioral roles.

1999 ◽  
Vol 202 (10) ◽  
pp. 1255-1265 ◽  
Author(s):  
R.W. Turner ◽  
L. Maler

Oscillatory and burst discharge is recognized as a key element of signal processing from the level of receptor to cortical output cells in most sensory systems. The relevance of this activity for electrosensory processing has become increasingly apparent for cells in the electrosensory lateral line lobe (ELL) of gymnotiform weakly electric fish. Burst discharge by ELL pyramidal cells can be recorded in vivo and has been directly associated with feature extraction of electrosensory input. In vivo recordings have also shown that pyramidal cells are differentially tuned to the frequency of amplitude modulations across three ELL topographic maps of electroreceptor distribution. Pyramidal cell recordings in vitro reveal two forms of oscillatory discharge with properties consistent with pyramidal cell frequency tuning in vivo. One is a slow oscillation of spike discharge arising from local circuit interactions that exhibits marked changes in several properties across the sensory maps. The second is a fast, intrinsic form of burst discharge that incorporates a newly recognized interaction between somatic and dendritic membranes. These findings suggest that a differential regulation of oscillatory discharge properties across sensory maps may underlie frequency tuning in the ELL and influence feature extraction in vivo.


2014 ◽  
Vol 112 (4) ◽  
pp. 752-765 ◽  
Author(s):  
Henriette Walz ◽  
Jan Grewe ◽  
Jan Benda

Although communication signals often vary continuously on the underlying signal parameter, they are perceived as distinct categories. We here report the opposite case where an electrocommunication signal is encoded in four distinct regimes, although the behavior described to date does not show distinct categories. In particular, we studied the encoding of chirps by P-unit afferents in the weakly electric fish Apteronotus leptorhynchus. These fish generate an electric organ discharge that oscillates at a certain individual-specific frequency. The interaction of two fish in communication contexts leads to the emergence of a beating amplitude modulation (AM) at the frequency difference between the two individual signals. This frequency difference represents the social context of the encounter. Chirps are transient increases of the fish's frequency leading to transient changes in the frequency of the AM. We stimulated the cells with the same chirp on different, naturally occurring backgrounds beats. The P-units responded either by synchronization or desynchronization depending on the background. Although the duration of a chirp is often shorter than a full cycle of the AM it elicits, the distinct responses of the P-units to the chirp can be predicted solely from the frequency of the AM based on the static frequency tuning of the cells.


2013 ◽  
Vol 109 (7) ◽  
pp. 1713-1723 ◽  
Author(s):  
Michael R. Markham ◽  
Leonard K. Kaczmarek ◽  
Harold H. Zakon

We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na+current ( INa) with extremely rapid recovery from inactivation (τrecov= 0.3 ms) allowing complete recovery of Na+current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K+current and a Na+-activated K+current ( IKNa), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased IKNais a function of enhanced Na+influx. Numerical simulations suggest that changing INamagnitude produces corresponding changes in AP amplitude and that KNachannels increase AP energy efficiency (10–30% less Na+influx/AP) over model cells with only voltage-gated K+channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na+channels and the novel use of KNachannels to maximize AP amplitude at a given Na+conductance.


1989 ◽  
Vol 146 (1) ◽  
pp. 229-253 ◽  
Author(s):  
C. C. Bell

Weakly electric fish use their electrosensory systems for electrocommunication, active electrolocation and low-frequency passive electrolocation. In electric fish of the family Mormyridae, these three purposes are mediated by separate classes of electroreceptors: electrocommunication by Knollenorgan electroreceptors, active electrolocation by Mormyromast electroreceptors and low-frequency passive electrolocation by ampullary electroreceptors. The primary afferent fibres from each class of electroreceptors terminate in a separate central region. Thus, the mormyrid electrosensory system has three anatomically and functionally distinct subsystems. This review describes the sensory coding and initial processing in each of the three subsystems, with an emphasis on the Knollenorgan and Mormyromast subsystems. The Knollenorgan subsystem is specialized for the measurement of temporal information but appears to ignore both intensity and spatial information. In contrast, the Mormyromast subsystem is specialized for the measurement of both intensity and spatial information. The morphological and physiological characteristics of the primary afferents and their central projection regions are quite different for the two subsystems and reflect the type of information which the subsystems preserve. This review also describes the electric organ corollary discharge (EOCD) effects which are present in the central projection regions of each of the three electrosensory subsystems. These EOCD effects are driven by the motor command that drives the electric organ to discharge. The EOCD effects are different in each of the three subsystems and these differences reflect differences in both the pattern and significance of the sensory information that is evoked by the fish's own electric organ discharge. Some of the EOCD effects are invariant, whereas others are plastic and depend on previous afferent input. The mormyrid work is placed within two general contexts: (a) the measurement of time and intensity in sensory systems, and (b) the various roles of motor command (efferent) signals and self-induced sensory (reafferent) signals in sensorimotor systems.


2000 ◽  
Vol 203 (3) ◽  
pp. 481-492 ◽  
Author(s):  
R. Budelli ◽  
A.A. Caputi

Weakly electric fish explore the environment using electrolocation. They produce an electric field that is detected by cutaneous electroreceptors; external objects distort the field, thus generating an electric image. The electric image of objects of complex impedance was investigated using a realistic model, which was able to reproduce previous experimental data. The transcutaneous voltage in the presence of an elementary object is modulated in amplitude and waveform on the skin. Amplitude modulation (measured as the relative change in the local peak-to-peak amplitude) consists of a ‘Mexican hat’ profile whose maximum relative slope depends on the distance of the fish from the object. Waveform modulation depends on both the distance and the electrical characteristics of the object. Changes in waveform are indicated by the amplitude ratio of the larger positive and negative phases of the local electric organ discharge on the skin. Using the peak-to-peak amplitude and the positive-to-negative amplitude ratio of this discharge, a perceptual space can be defined and correlated with the capacitance and resistance of the object. When the object is moved away, the perceptual space is reduced but keeps the same proportions (homothetically): for a given object, the positive-to-negative amplitude ratio is a linear function of the peak-to-peak amplitude. This linear function depends on the electrical characteristics of the object. However, there are ‘families’ of objects with different electrical characteristics that produce changes in the parameters of the local electric organ discharge that are related by the same linear function. We propose that these functions code the perceptual properties of an object related to its impedance.


2005 ◽  
Vol 272 (1570) ◽  
pp. 1305-1314 ◽  
Author(s):  
Matthew E Arnegard ◽  
Bruce A Carlson

Weakly electric fish emit and receive low-voltage electric organ discharges (EODs) for electrolocation and communication. Since the discovery of the electric sense, their behaviours in the wild have remained elusive owing to their nocturnal habits and the inaccessible environments in which they live. The transparency of Lake Malawi provided the first opportunity to simultaneously observe freely behaving mormyrid fish and record their EODs. We observed a piscivorous mormyrid, Mormyrops anguilloides , hunting in small groups in Lake Malawi while feeding on rock-frequenting cichlids of the largest known vertebrate species flock. Video recordings yielded the novel and unexpected finding that these groups resembled hunting packs by being largely composed of the same individuals across days. We show that EOD accelerations accompany prey probing and size estimation by M. anguilloides . In addition, group members occasionally synchronize bursts of EODs with an extraordinary degree of precision afforded by the mormyrid echo response. The characteristics and context of burst synchronization suggest that it may function as a pack cohesion signal. Our observations highlight the potential richness of social behaviours in a basal vertebrate lineage, and provide a framework for future investigations of the neural mechanisms, behavioural rules and ecological significance of social predation in M. anguilloides .


Sign in / Sign up

Export Citation Format

Share Document