scholarly journals The function and molecular identity of inward rectifier channels in vestibular hair cells of the mouse inner ear

2012 ◽  
Vol 108 (1) ◽  
pp. 175-186 ◽  
Author(s):  
Michaela E. Levin ◽  
Jeffrey R. Holt

Inner ear hair cells respond to mechanical stimuli with graded receptor potentials. These graded responses are modulated by a host of voltage-dependent currents that flow across the basolateral membrane. Here, we examine the molecular identity and the function of a class of voltage-dependent ion channels that carries the potassium-selective inward rectifier current known as IK1. IK1has been identified in vestibular hair cells of various species, but its molecular composition and functional contributions remain obscure. We used quantitative RT-PCR to show that the inward rectifier gene, Kir2.1, is highly expressed in mouse utricle between embryonic day 15 and adulthood. We confirmed Kir2.1 protein expression in hair cells by immunolocalization. To examine the molecular composition of IK1, we recorded voltage-dependent currents from type II hair cells in response to 50-ms steps from −124 to −54 in 10-mV increments. Wild-type cells had rapidly activating inward currents with reversal potentials close to the K+equilibrium potential and a whole-cell conductance of 4.8 ± 1.5 nS ( n = 46). In utricle hair cells from Kir2.1-deficient (Kir2.1−/−) mice, IK1was absent at all stages examined. To identify the functional contribution of Kir2.1, we recorded membrane responses in current-clamp mode. Hair cells from Kir2.1−/−mice had significantly ( P < 0.001) more depolarized resting potentials and larger, slower membrane responses than those of wild-type cells. These data suggest that Kir2.1 is required for IK1in type II utricle hair cells and contributes to hyperpolarized resting potentials and fast, small amplitude receptor potentials in response to current inputs, such as those evoked by hair bundle deflections.

2008 ◽  
Vol 100 (4) ◽  
pp. 2287-2299 ◽  
Author(s):  
Liping Nie ◽  
Jun Zhu ◽  
Michael Anne Gratton ◽  
Amy Liao ◽  
Karen J. Mu ◽  
...  

The molecular identity of non-Cav1.3 channels in auditory and vestibular hair cells has remained obscure, yet the evidence in support of their roles to promote diverse Ca2+-dependent functions is indisputable. Recently, a transient Cav3.1 current that serves as a functional signature for the development and regeneration of hair cells has been identified in the chicken basilar papilla. The Cav3.1 current promotes spontaneous activity of the developing hair cell, which may be essential for synapse formation. Here, we have isolated and sequenced the full-length complementary DNA of a distinct isoform of Cav3.1 in the mouse inner ear. The channel is derived from alternative splicing of exon14, exon25A, exon34, and exon35. Functional expression of the channel in Xenopus oocytes yielded Ca2+ currents, which have a permeation phenotype consistent with T-type channels. However, unlike most multiion channels, the T-type channel does not exhibit the anomalous mole fraction effect, possibly reflecting comparable permeation properties of divalent cations. The Cav3.1 channel was expressed in sensory and nonsensory epithelia of the inner ear. Moreover, there are profound changes in the expression levels during development. The differential expression of the channel during development and the pharmacology of the inner ear Cav3.1 channel may have contributed to the difficulties associated with identification of the non-Cav1.3 currents.


1998 ◽  
Vol 79 (4) ◽  
pp. 2235-2239 ◽  
Author(s):  
John S. Oghalai ◽  
Jeffrey R. Holt ◽  
Takashi Nakagawa ◽  
Thomas M. Jung ◽  
Newton J. Coker ◽  
...  

Oghalai, John S., Jeffrey R. Holt, Takashi Nakagawa, Thomas M. Jung, Newton J. Coker, Herman A. Jenkins, Ruth Anne Eatock, and William E. Brownell. Ionic currents and electromotility in inner ear hair cells from humans. J. Neurophysiol. 79: 2235–2239, 1998. The upright posture and rich vocalizations of primates place demands on their senses of balance and hearing that differ from those of other animals. There is a wealth of behavioral, psychophysical, and CNS measures characterizing these senses in primates, but no prior recordings from their inner ear sensory receptor cells. We harvested human hair cells from patients undergoing surgical removal of life-threatening brain stem tumors and measured their ionic currents and electromotile responses. The hair cells were either isolated or left in situ in their sensory epithelium and investigated using the tight-seal, whole cell technique. We recorded from both type I and type II vestibular hair cells under voltage clamp and found four voltage-dependent currents, each of which has been reported in hair cells of other animals. Cochlear outer hair cells demonstrated electromotility in response to voltage steps like that seen in rodent animal models. Our results reveal many qualitative similarities to hair cells obtained from other animals and justify continued investigations to explore quantitative differences that may be associated with normal or pathological human sensation.


2004 ◽  
Vol 19 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Manning J. Correia ◽  
Thomas G. Wood ◽  
Deborah Prusak ◽  
Tianxiang Weng ◽  
Katherine J. Rennie ◽  
...  

A fast inwardly rectifying current has been observed in some of the sensory cells (hair cells) of the inner ear of several species. While the current was presumed to be an IKir current, contradictory evidence existed as to whether the cloned channel actually belonged to the Kir2.0 subfamily of potassium inward rectifiers. In this paper, we report for the first time converging evidence from electrophysiological, biochemical, immunohistochemical, and genetic studies that show that the Kir2.1 channel carries the fast inwardly rectifying currents found in pigeon vestibular hair cells. Following cytoplasm extraction from single type II and multiple pigeon vestibular hair cells, mRNA was reverse transcribed, amplified, and sequenced. The open reading frame (ORF), consisting of a 1,284-bp nucleotide sequence, showed 94, 85, and 83% identity with Kir2.1 subunit sequences from chick lens, Kir2 sequences from human heart, and a mouse macrophage cell line, respectively. Phylogenetic analyses revealed that pKir2.1 formed an immediate node with hKir2.1 but not with hKir2.2–2.4. Hair cells (type I and type II) and supporting cells in the sensory epithelium reacted positively with a Kir2.1 antibody. The whole cell current recorded in oocytes and CHO cells, transfected with pigeon hair cell Kir2.1 (pKir2.1), demonstrated blockage by Ba2+ and sensitivity to changing K+ concentration. The mean single-channel linear slope conductance in transfected CHO cells was 29 pS. The open dwell time was long (∼300 ms at −100 mV), and the closed dwell time was short (∼34 ms at −100 mV). Multistates ranging from 3–6 were noted in some single-channel responses. All of the above features have been described for other Kir2.1 channels. Current clamp studies of native pigeon vestibular hair cells illustrated possible physiological roles of the channel and showed that blockage of the channel by Ba2+ depolarized the resting membrane potential by ∼30 mV. Negative currents hyperpolarized the membrane ∼20 mV before block but ∼60 mV following block. RT-PCR studies revealed that the pKir2.1 channels found in pigeon vestibular hair cells were also present in pigeon vestibular nerve, vestibular ganglion, lens, neck muscle, brain (brain stem, cerebellum and optic tectum), liver, and heart.


Author(s):  
Julian R. A. Wooltorton ◽  
Karen M. Hurley ◽  
Hong Bao ◽  
Ruth A. Eatock

1997 ◽  
Vol 273 (1) ◽  
pp. H324-H332 ◽  
Author(s):  
A. Stadnicka ◽  
Z. J. Bosnjak ◽  
J. P. Kampine ◽  
W. M. Kwok

The effects of sevoflurane on the inward rectifier potassium current (IKIR) were examined in guinea pig ventricular cardiomyocytes using the whole cell patch-clamp methodology. Sevoflurane had a unique dual effect on the steady-state current amplitude, producing a reversible, concentration- and voltage-dependent block of the inward current at potentials negative to the potassium equilibrium potential (EK) but enhancing the outward current positive to EK. Accordingly, the steady-state conductance negative to EK was reduced by sevoflurane, but conductance positive to EK was increased. The chord conductance-voltage relationship showed depolarizing shifts at 0.7, 1.3, and 1.6 mM sevoflurane. When the myocytes were dialyzed with 10 mM Mg2+, but not with 1.0 mM Mg2+, sevoflurane further slowed current activation kinetics. With 10 mM intracellular Mg2+, the outward current enhancement by sevoflurane and the associated shifts in half-activation potential were abolished. Polyamines abolished all effects of sevoflurane on IKIR. With the use of the Woodhull model for voltage-dependent block, we determined the sevoflurane interaction site with the inward rectifier potassium channel to be at an electrical distance of 0.2 from the extracellular side.


2000 ◽  
Vol 109 (5_suppl) ◽  
pp. 20-25 ◽  
Author(s):  
Kojiro Tsuji ◽  
Steven D. Rauch ◽  
Conrad Wall ◽  
Luis Velázquez-Villaseñor ◽  
Robert J. Glynn ◽  
...  

Quantitative assessments of vestibular hair cells and Scarpa's ganglion cells were performed on 17 temporal bones from 10 individuals who had well-documented clinical evidence of aminoglycoside ototoxicity (streptomycin, kanamycin, and neomycin). Assessment of vestibular hair cells was performed by Nomarski (differential interference contrast) microscopy. Hair cell counts were expressed as densities (number of cells per 0.01 mm2 surface area of the sensory epithelium). The results were compared with age-matched normal data. Streptomycin caused a significant loss of both type I and type II hair cells in all 5 vestibular sense organs. In comparing the ototoxic effect on type I versus type II hair cells, there was greater type I hair cell loss for all 3 cristae, but not for the maculae. The vestibular ototoxic effects of kanamycin appeared to be similar to those of streptomycin, but the small sample size precluded definitive conclusions from being made. Neomycin did not cause loss of vestibular hair cells. Within the limits of this study (maximum postototoxicity survival time of 12 months), there was no significant loss of Scarpa's ganglion cells for any of the 3 drugs. The findings have implications in several clinical areas, including the correlation of vestibular test results to pathological findings, the rehabilitation of patients with vestibular ototoxicity, the use of aminoglycosides to treat Meniere's disease, and the development of a vestibular prosthesis.


2012 ◽  
Vol 285 (1-2) ◽  
pp. 13-19 ◽  
Author(s):  
Chang-Kai Guo ◽  
Yi Wang ◽  
Tao Zhou ◽  
Hong Yu ◽  
Wen-Juan Zhang ◽  
...  

2017 ◽  
Vol 423 (2) ◽  
pp. 126-137 ◽  
Author(s):  
Jeremy S. Duncan ◽  
Michelle L. Stoller ◽  
Andrew F. Francl ◽  
Fadel Tissir ◽  
Danelle Devenport ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document