scholarly journals Temporal Patterns of Inputs to Cerebellum Necessary and Sufficient for Trace Eyelid Conditioning

2010 ◽  
Vol 104 (2) ◽  
pp. 627-640 ◽  
Author(s):  
Brian E. Kalmbach ◽  
Tatsuya Ohyama ◽  
Michael D. Mauk

Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses. We find that presenting the cerebellum with one input that mimics persistent activity observed in mPFC and the lateral pontine nuclei during trace eyelid conditioning and another that mimics tone-elicited mossy fiber activity is sufficient to produce responses whose properties quantitatively match trace eyelid responses using a tone. Probe trials with each input delivered separately provide evidence that the cerebellum learns to respond to the mPFC-like input (that overlaps with the US) and learns to suppress responding to the tone-like input (that does not). This contributes to precisely timed responses and the well-documented influence of tone offset on the timing of trace responses. Computer simulations suggest that the underlying cerebellar mechanisms involve activation of different subsets of granule cells during the tone and during the stimulus-free trace interval. These results indicate that tone-driven and mPFC-like inputs are necessary and sufficient for the cerebellum to learn well-timed trace conditioned responses.

2012 ◽  
Vol 107 (1) ◽  
pp. 50-64 ◽  
Author(s):  
Jennifer J. Siegel ◽  
Brian Kalmbach ◽  
Raymond A. Chitwood ◽  
Michael D. Mauk

We have addressed the source and nature of the persistent neural activity that bridges the stimulus-free gap between the conditioned stimulus (CS) and unconditioned stimulus (US) during trace eyelid conditioning. Previous work has demonstrated that this persistent activity is necessary for trace eyelid conditioning: CS-elicited activity in mossy fiber inputs to the cerebellum does not extend into the stimulus-free trace interval, which precludes the cerebellar learning that mediates conditioned response expression. In behaving rabbits we used in vivo recordings from a region of medial prefrontal cortex (mPFC) that is necessary for trace eyelid conditioning to test the hypothesis that neurons there generate activity that persists beyond CS offset. These recordings revealed two patterns of activity during the trace interval that would enable cerebellar learning. Activity in some cells began during the tone CS and persisted to overlap with the US, whereas in other cells, activity began during the stimulus-free trace interval. Injection of anterograde tracers into this same region of mPFC revealed dense labeling in the pontine nuclei, where recordings also revealed tone-evoked persistent activity during trace conditioning. These data suggest a corticopontine pathway that provides an input to the cerebellum during trace conditioning trials that bridges the temporal gap between the CS and US to engage cerebellar learning. As such, trace eyelid conditioning represents a well-characterized and experimentally tractable system that can facilitate mechanistic analyses of cortical persistent activity and how it is used by downstream brain structures to influence behavior.


1999 ◽  
Vol 81 (4) ◽  
pp. 1645-1660 ◽  
Author(s):  
Maxine M. Okazaki ◽  
Péter Molnár ◽  
J. Victor Nadler

Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in presence and absence of seizure-induced growth. A common feature of temporal lobe epilepsy and of animal models of epilepsy is the growth of hippocampal mossy fibers into the dentate molecular layer, where at least some of them innervate granule cells. Because the mossy fibers are axons of granule cells, the recurrent mossy fiber pathway provides monosynaptic excitatory feedback to these neurons that could facilitate seizure discharge. We used the pilocarpine model of temporal lobe epilepsy to study the synaptic responses evoked by activating this pathway. Whole cell patch-clamp recording demonstrated that antidromic stimulation of the mossy fibers evoked an excitatory postsynaptic current (EPSC) in ∼74% of granule cells from rats that had survived >10 wk after pilocarpine-induced status epilepticus. Recurrent mossy fiber growth was demonstrated with the Timm stain in all instances. In contrast, antidromic stimulation of the mossy fibers evoked an EPSC in only 5% of granule cells studied 4–6 days after status epilepticus, before recurrent mossy fiber growth became detectable. Notably, antidromic mossy fiber stimulation also evoked an EPSC in many granule cells from control rats. Clusters of mossy fiber-like Timm staining normally were present in the inner third of the dentate molecular layer at the level of the hippocampal formation from which slices were prepared, and several considerations suggested that the recorded EPSCs depended mainly on activation of recurrent mossy fibers rather than associational fibers. In both status epilepticus and control groups, the antidromically evoked EPSC was glutamatergic and involved the activation of both AMPA/kainate and N-methyl-d-aspartate (NMDA) receptors. EPSCs recorded in granule cells from rats with recurrent mossy fiber growth differed in three respects from those recorded in control granule cells: they were much more frequently evoked, a number of them were unusually large, and the NMDA component of the response was generally much more prominent. In contrast to the antidromically evoked EPSC, the EPSC evoked by stimulation of the perforant path appeared to be unaffected by a prior episode of status epilepticus. These results support the hypothesis that recurrent mossy fiber growth and synapse formation increases the excitatory drive to dentate granule cells and thus facilitates repetitive synchronous discharge. Activation of NMDA receptors in the recurrent pathway may contribute to seizure propagation under depolarizing conditions. Mossy fiber-granule cell synapses also are present in normal rats, where they may contribute to repetitive granule cell discharge in regions of the dentate gyrus where their numbers are significant.


2000 ◽  
Vol 84 (5) ◽  
pp. 2380-2389 ◽  
Author(s):  
Jeremy L. Hardison ◽  
Maxine M. Okazaki ◽  
J. Victor Nadler

The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in many persons with temporal lobe epilepsy. The new connections among granule cells provide a novel mechanism of synchronization that could enhance the participation of these cells in seizures. Despite the presence of robust recurrent mossy fiber growth, orthodromic or antidromic activation of granule cells usually does not evoke repetitive discharge. This study tested the ability of modestly elevated [K+]o, reduced GABAA receptor-mediated inhibition and frequency facilitation to unmask the effect of recurrent excitation. Transverse slices of the caudal hippocampal formation were prepared from pilocarpine-treated rats that either had or had not developed status epilepticus with subsequent recurrent mossy fiber growth. During superfusion with standard medium (3.5 mM K+), antidromic stimulation of the mossy fibers evoked epileptiform activity in 14% of slices with recurrent mossy fiber growth. This value increased to ∼50% when [K+]o was raised to either 4.75 or 6 mM. Addition of bicuculline (3 or 30 μM) to the superfusion medium did not enhance the probability of evoking epileptiform activity but did increase the magnitude of epileptiform discharge if such activity was already present. (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (1 μM), which selectively activates type II metabotropic glutamate receptors present on mossy fiber terminals, strongly depressed epileptiform responses. This result implies a critical role for the recurrent mossy fiber pathway. No enhancement of the epileptiform discharge occurred during repetitive antidromic stimulation at frequencies of 0.2, 1, or 10 Hz. In fact, antidromically evoked epileptiform activity became progressively attenuated during a 10-Hz train. Antidromic stimulation of the mossy fibers never evoked epileptiform activity in slices from control rats under any condition tested. These results indicate that even modest changes in [K+]o dramatically affect granule cell epileptiform activity supported by the recurrent mossy fiber pathway. A small increase in [K+]o reduces the amount of recurrent mossy fiber growth required to synchronize granule cell discharge. Block of GABAA receptor-mediated inhibition is less efficacious and frequency facilitation may not be a significant factor.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Andrei Khilkevich ◽  
Juan Zambrano ◽  
Molly-Marie Richards ◽  
Michael Dean Mauk

Most movements are not unitary, but are comprised of sequences. Although patients with cerebellar pathology display severe deficits in the execution and learning of sequences (Doyon et al., 1997; Shin and Ivry, 2003), most of our understanding of cerebellar mechanisms has come from analyses of single component movements. Eyelid conditioning is a cerebellar-mediated behavior that provides the ability to control and restrict inputs to the cerebellum through stimulation of mossy fibers. We utilized this advantage to test directly how the cerebellum can learn a sequence of inter-connected movement components in rabbits. We show that the feedback signals from one component are sufficient to serve as a cue for the next component in the sequence. In vivo recordings from Purkinje cells demonstrated that all components of the sequence were encoded similarly by cerebellar cortex. These results provide a simple yet general framework for how the cerebellum can use simple associate learning processes to chain together a sequence of appropriately timed responses.


2000 ◽  
Vol 83 (4) ◽  
pp. 2421-2430 ◽  
Author(s):  
Yo Otsu ◽  
Eiichi Maru ◽  
Hisayuki Ohata ◽  
Ichiro Takashima ◽  
Riichi Kajiwara ◽  
...  

In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca2+. The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizurelike activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.


2004 ◽  
Vol 24 (8) ◽  
pp. 934-943 ◽  
Author(s):  
Bingren Hu ◽  
Chunli Liu ◽  
Helen Bramlett ◽  
Thomas J. Sick ◽  
Ofelia F. Alonso ◽  
...  

Traumatic brain injury (TBI) leads to mossy fiber reorganization, which is considered to be a causative factor in the development of temporal lobe epilepsy. However, the underlying mechanism is not fully understood. Emerging evidence suggests that TrkB–ERK1/2–CREB/Elk-1 pathways are highly related to synaptic plasticity. This study used the rat fluid-percussion injury model to investigate activation of TrkB–ERK1/2–CREB/Elk-1 signaling pathways after TBI. Rats were subjected to 2.0-atm parasagittal TBI followed by 30 minutes, 4 hours, 24 hours, and 72 hours of recovery. After TBI, striking activation of TrkB–ERK1/2–CREB/Elk-1 signaling pathways in mossy fiber organization were observed with confocal microscopy and Western blot analysis. ERK1/2 was highly phosphorylated predominantly in hippocampal mossy fibers, whereas TrkB was phosphorylated both in the mossy fibers and the dentate gyrus region at 30 minutes and 4 hours of recovery after TBI. CREB was also activated at 30 minutes, peaked at 24 hours of recovery, and returned to the control level at 72 hours of recovery in dentate gyrus granule cells. Elk-1 phosphorylation was seen in CA3 neurons at 4 hours after TBI. The results suggest that the signaling pathways of TrkB–ERK1/2–CREB/Elk-1 are highly activated in mossy fiber organization, which may contribute to mossy fiber reorganization seen after TBI.


2019 ◽  
Vol 121 (2) ◽  
pp. 609-619 ◽  
Author(s):  
Enhui Pan ◽  
Zirun Zhao ◽  
James O. McNamara

Hippocampal mossy fiber axons simultaneously activate CA3 pyramidal cells and stratum lucidum interneurons (SLINs), the latter providing feedforward inhibition to control CA3 pyramidal cell excitability. Filopodial extensions of giant boutons of mossy fibers provide excitatory synaptic input to the SLIN. These filopodia undergo extraordinary structural plasticity causally linked to execution of memory tasks, leading us to seek the mechanisms by which activity regulates these synapses. High-frequency stimulation of the mossy fibers induces long-term depression (LTD) of their calcium-permeable AMPA receptor synapses with SLINs; previous work localized the site of induction to be postsynaptic and the site of expression to be presynaptic. Yet, the underlying signaling events and the identity of the retrograde signal are incompletely understood. We used whole cell recordings of SLINs in hippocampal slices from wild-type and mutant mice to explore the mechanisms. Genetic and pharmacologic perturbations revealed a requirement for both the receptor tyrosine kinase TrkB and its agonist, brain-derived neurotrophic factor (BDNF), for induction of LTD. Inclusion of inhibitors of Trk receptor kinase and PLC in the patch pipette prevented LTD. Endocannabinoid receptor antagonists and genetic deletion of the CB1 receptor prevented LTD. We propose a model whereby release of BDNF from mossy fiber filopodia activates TrkB and PLCγ1 signaling postsynaptically within SLINs, triggering synthesis and release of an endocannabinoid that serves as a retrograde signal, culminating in reduced glutamate release. Insights into the signaling pathways by which activity modifies function of these synapses will facilitate an understanding of their contribution to the local circuit and behavioral consequences of hippocampal granule cell activity. NEW & NOTEWORTHY We investigated signaling mechanisms underlying plasticity of the hippocampal mossy fiber filopodial synapse with interneurons in stratum lucidum. High-frequency stimulation of the mossy fibers induces long-term depression of this synapse. Our findings are consistent with a model in which brain-derived neurotrophic factor released from filopodia activates TrkB of a stratum lucidum interneuron; the ensuing activation of PLCγ1 induces synthesis of an endocannabinoid, which provides a retrograde signal leading to reduced release of glutamate presynaptically.


2004 ◽  
Vol 92 (6) ◽  
pp. 3582-3595 ◽  
Author(s):  
Suzanne B. Bausch ◽  
James O. McNamara

Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatoty postsynaptic currents (sEPSCs) >600pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.


2010 ◽  
Vol 103 (4) ◽  
pp. 2039-2049 ◽  
Author(s):  
Brian E. Kalmbach ◽  
Tobin Davis ◽  
Tatsuya Ohyama ◽  
Frank Riusech ◽  
William L. Nores ◽  
...  

We used micro-infusions during eyelid conditioning in rabbits to investigate the relative contributions of cerebellar cortex and the underlying deep nuclei (DCN) to the expression of cerebellar learning. These tests were conducted using two forms of cerebellum-dependent eyelid conditioning for which the relative roles of cerebellar cortex and DCN are controversial: delay conditioning, which is largely unaffected by forebrain lesions, and trace conditioning, which involves interactions between forebrain and cerebellum. For rabbits trained with delay conditioning, silencing cerebellar cortex by micro-infusions of the local anesthetic lidocaine unmasked stereotyped short-latency responses. This was also the case after extinction as observed previously with reversible blockade of cerebellar cortex output. Conversely, increasing cerebellar cortex activity by micro-infusions of the GABAA antagonist picrotoxin reversibly abolished conditioned responses. Effective cannula placements were clustered around the primary fissure and deeper in lobules hemispheric lobule IV (HIV) and hemispheric lobule V (HV) of anterior lobe. In well-trained trace conditioned rabbits, silencing this same area of cerebellar cortex or reversibly blocking cerebellar cortex output also unmasked short-latency responses. Because Purkinje cells are the sole output of cerebellar cortex, these results provide evidence that the expression of well-timed conditioned responses requires a well-timed decrease in the activity of Purkinje cells in anterior lobe. The parallels between results from delay and trace conditioning suggest similar contributions of plasticity in cerebellar cortex and DCN in both instances.


2017 ◽  
Author(s):  
Jesse I. Gilmer ◽  
Abigail L. Person

AbstractCombinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar granule cell layer and examined how GCL architecture contributes to granule cell (GrC) combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fibers clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing.Significance StatementCerebellar granule cells are among the simplest neurons, with tiny somata and on average just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer (GCL) as a combinatorial expander, where each granule cell represents a unique combination of inputs. Despite the centrality of these theories to cerebellar physiology, the degree of expansion supported by anatomically realistic patterns of inputs is unknown. Using modeling and anatomy, we show that realistic input patterns constrain combinatorial diversity by producing redundant combinations, which nevertheless could support temporal diversification of like-combinations, suitable for learned timing. Our study suggests a neural substrate for producing high levels of both combinatorial and temporal diversity in the GCL.


Sign in / Sign up

Export Citation Format

Share Document