scholarly journals Differential encoding of action selection by orbitofrontal and striatal population dynamics

2020 ◽  
Vol 124 (2) ◽  
pp. 634-644
Author(s):  
Long Yang ◽  
Sotiris C. Masmanidis

While previous literature shows that both orbitofrontal cortex (OFC) and dorsomedial striatum (DMS) represent information relevant to selecting specific actions, few studies have directly compared neural signals between these areas. Here we compared OFC and DMS dynamics in mice performing a two-alternative choice task. We found that the animal’s choice could be decoded more accurately from DMS population activity. This work provides among the first evidence that OFC and DMS differentially represent information about an animal’s selected action.

2019 ◽  
Vol 70 (1) ◽  
pp. 53-76 ◽  
Author(s):  
Melissa J. Sharpe ◽  
Thomas Stalnaker ◽  
Nicolas W. Schuck ◽  
Simon Killcross ◽  
Geoffrey Schoenbaum ◽  
...  

Making decisions in environments with few choice options is easy. We select the action that results in the most valued outcome. Making decisions in more complex environments, where the same action can produce different outcomes in different conditions, is much harder. In such circumstances, we propose that accurate action selection relies on top-down control from the prelimbic and orbitofrontal cortices over striatal activity through distinct thalamostriatal circuits. We suggest that the prelimbic cortex exerts direct influence over medium spiny neurons in the dorsomedial striatum to represent the state space relevant to the current environment. Conversely, the orbitofrontal cortex is argued to track a subject's position within that state space, likely through modulation of cholinergic interneurons.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sandy Stayte ◽  
Amolika Dhungana ◽  
Bryce Vissel ◽  
Laura A. Bradfield

Several lines of evidence accrued over the last 5–10 years have converged to suggest that the parafascicular nucleus of the thalamus and the lateral orbitofrontal cortex each represent or contribute to internal state/context representations that guide action selection in partially observable task situations. In rodents, inactivations of each structure have been found to selectively impair performance in paradigms testing goal-directed action selection, but only when that action selection relies on state representations. Electrophysiological evidence has suggested that each structure achieves this function via inputs onto cholinergic interneurons (CINs) in the dorsomedial striatum. Here, we briefly review these studies, then point to anatomical evidence regarding the afferents of each structure and what they suggest about the specific features that each contribute to internal state representations. Finally, we speculate as to whether this role might be achieved interdependently through direct PF→OFC projections, or through the convergence of independent direct orbitofrontal cortex (OFC) and parafascicular nucleus of the thalamus (PF) inputs onto striatal targets.


2017 ◽  
Vol 81 (4) ◽  
pp. 366-377 ◽  
Author(s):  
Kelsey S. Zimmermann ◽  
John A. Yamin ◽  
Donald G. Rainnie ◽  
Kerry J. Ressler ◽  
Shannon L. Gourley

2011 ◽  
Vol 4 (4) ◽  
pp. 217-234 ◽  
Author(s):  
Beate C. Finger ◽  
Robert M. J. Deacon ◽  
Peter Burns ◽  
Thomas G. Campbell

2007 ◽  
Vol 1121 (1) ◽  
pp. 174-192 ◽  
Author(s):  
S. B. OSTLUND ◽  
B. W. BALLEINE

2014 ◽  
Vol 40 (4) ◽  
pp. 1027-1036 ◽  
Author(s):  
Andrew M Swanson ◽  
Amanda G Allen ◽  
Lauren P Shapiro ◽  
Shannon L Gourley

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kelsey M Hallinen ◽  
Ross Dempsey ◽  
Monika Scholz ◽  
Xinwei Yu ◽  
Ashley Linder ◽  
...  

We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activity during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons positively correlated with AVA during movement become negatively correlated during immobilization and vice versa. This work provides needed experimental measurements that inform and constrain ongoing efforts to understand population dynamics underlying locomotion in C. elegans.


2020 ◽  
Author(s):  
Pragathi Priyadharsini Balasubramani ◽  
Benjamin Y. Hayden

ABSTRACTEconomic choice and inhibition are two important elements of our cognitive repertoires that may be closely related. We and others have noted that during economic choice, options are typically considered serially; this fact provides important constraints on our understanding of choice. Notably, asynchronous contemplation means that each individual option is subject to an accept-reject decision. We have proposed that these component accept-reject decisions may have some kinship with stopping decisions. One prediction of this idea is that stopping and choice may reflect similar neural processes occurring in overlapping brain circuits. To test the idea, we recorded neuronal activity in orbitofrontal cortex (OFC) Area 13 while macaques performed a stop signal task interleaved with a structurally matched choice task. Using neural network decoders, we find that OFC ensembles have overlapping codes for stopping and choice: the decoder that was only trained to identify accept vs. reject trials performed with higher efficiency even when tested on the stop trials. These results provide tentative support for the idea that mechanisms underlying inhibitory control and choice selection may be subject to theoretical unification.


2021 ◽  
Author(s):  
Shreya Saxena ◽  
Abigail A. Russo ◽  
John P. Cunningham ◽  
Mark M. Churchland

AbstractLearned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling, and yielded quantitative and qualitative predictions. To evaluate predictions, we recorded motor cortex population activity during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.


Sign in / Sign up

Export Citation Format

Share Document