Cerebellar Disease Alters the Axis of the High-Acceleration Vestibuloocular Reflex

2005 ◽  
Vol 94 (5) ◽  
pp. 3417-3429 ◽  
Author(s):  
Mark F. Walker ◽  
David S. Zee

L. W. Schultheis and D. A. Robinson showed that the axis of the rotational vestibuloocular reflex (RVOR) cannot be altered by visual-vestibular mismatch (“cross-axis adaptation”) when the vestibulocerebellum is lesioned. This suggests that the cerebellum may calibrate the axis of eye velocity of the RVOR under natural conditions. Thus we asked whether patients with cerebellar disease have alterations in the RVOR axis and, if so, what might be the mechanism. We used three-axis scleral coils to record head and eye movements during yaw, pitch, and roll head impulses in 18 patients with cerebellar disease and in a comparison group of eight subjects without neurologic disease. We found distinct shifts of the eye-velocity axis in patients. The characteristic finding was a disconjugate upward eye velocity during yaw. Measured at 70 ms after the onset of head rotation, the median upward gaze velocity was 15% of yaw head velocity for patients and <1% for normal subjects ( P < 0.001). Upward eye velocity was greater in the contralateral (abducting) eye during yaw and in the ipsilateral eye during roll. Patients had a higher gain (eye speed/head speed) for downward than for upward pitch (median ratio of downward to upward gain: 1.3). In patients, upward gaze velocities during both yaw and roll correlated with the difference in anterior (AC) and posterior canal excitations, scaled by the respective pitch gains. Our findings support the hypothesis that upward eye velocity during yaw results from AC excitation, which must normally be suppressed by the intact cerebellum.

2007 ◽  
Vol 98 (1) ◽  
pp. 295-302 ◽  
Author(s):  
Mark F. Walker ◽  
Jing Tian ◽  
David S. Zee

We studied the effect of cerebellar lesions on the 3-D control of the rotational vestibuloocular reflex (RVOR) to abrupt yaw-axis head rotation. Using search coils, three-dimensional (3-D) eye movements were recorded from nine patients with cerebellar disease and seven normal subjects during brief chair rotations (200°/s2 to 40°/s) and manual head impulses. We determined the amount of eye-position dependent torsion during yaw-axis rotation by calculating the torsional-horizontal eye-velocity axis for each of three vertical eye positions (0°, ±15°) and performing a linear regression to determine the relationship of the 3-D velocity axis to vertical eye position. The slope of this regression is the tilt angle slope. Overall, cerebellar patients showed a clear increase in the tilt angle slope for both chair rotations and head impulses. For chair rotations, the effect was not seen at the onset of head rotation when both patients and normal subjects had nearly head-fixed responses (no eye-position-dependent torsion). Over time, however, both groups showed an increasing tilt-angle slope but to a much greater degree in cerebellar patients. Two important conclusions emerge from these findings: the axis of eye rotation at the onset of head rotation is set to a value close to head-fixed (i.e., optimal for gaze stabilization during head rotation), independent of the cerebellum and once the head rotation is in progress, the cerebellum plays a crucial role in keeping the axis of eye rotation about halfway between head-fixed and that required for Listing's Law to be obeyed.


1999 ◽  
Vol 81 (5) ◽  
pp. 2415-2428 ◽  
Author(s):  
Matthew J. Thurtell ◽  
Ross A. Black ◽  
G. Michael Halmagyi ◽  
Ian S. Curthoys ◽  
Swee T. Aw

Vertical eye position–dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15–25°), high acceleration (4,000–6,000°/s2) yaw head rotations with respect to the trunk (peak velocity was 150–350°/s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20° up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20° down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0°, the velocity axes remained well aligned with each other. When fixation was on a target 20° up, the eye velocity axis tilted backward, when fixation was on a target 20° down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli—the eye position– dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position–dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing’s law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position–dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.


2000 ◽  
Vol 84 (2) ◽  
pp. 639-650 ◽  
Author(s):  
Matthew J. Thurtell ◽  
Mikhail Kunin ◽  
Theodore Raphan

It is well established that the head and eye velocity axes do not always align during compensatory vestibular slow phases. It has been shown that the eye velocity axis systematically tilts away from the head velocity axis in a manner that is dependent on eye-in-head position. The mechanisms responsible for producing these axis tilts are unclear. In this model-based study, we aimed to determine whether muscle pulleys could be involved in bringing about these phenomena. The model presented incorporates semicircular canals, central vestibular pathways, and an ocular motor plant with pulleys. The pulleys were modeled so that they brought about a rotation of the torque axes of the extraocular muscles that was a fraction of the angle of eye deviation from primary position. The degree to which the pulleys rotated the torque axes was altered by means of a pulley coefficient. Model input was head velocity and initial eye position data from passive and active yaw head impulses with fixation at 0°, 20° up and 20° down, obtained from a previous experiment. The optimal pulley coefficient required to fit the data was determined by calculating the mean square error between data and model predictions of torsional eye velocity. For active head impulses, the optimal pulley coefficient varied considerably between subjects. The median optimal pulley coefficient was found to be 0.5, the pulley coefficient required for producing saccades that perfectly obey Listing's law when using a two-dimensional saccadic pulse signal. The model predicted the direction of the axis tilts observed in response to passive head impulses from 50 ms after onset. During passive head impulses, the median optimal pulley coefficient was found to be 0.21, when roll gain was fixed at 0.7. The model did not accurately predict the alignment of the eye and head velocity axes that was observed early in the response to passive head impulses. We found that this alignment could be well predicted if the roll gain of the angular vestibuloocular reflex was modified during the initial period of the response, while pulley coefficient was maintained at 0.5. Hence a roll gain modification allows stabilization of the retinal image without requiring a change in the pulley effect. Our results therefore indicate that the eye position–dependent velocity axis tilts could arise due to the effects of the pulleys and that a roll gain modification in the central vestibular structures may be responsible for countering the pulley effect.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ana Carolina Binetti ◽  
Andrea Ximena Varela ◽  
Dana Lucila Lucarelli ◽  
Daniel Héctor Verdecchia

The aim of this paper is to report a case of a young woman with unilateral vestibular chronic failure with a poorly compensated vestibuloocular reflex during rapid head rotation. Additionally, she developed migraine symptoms during the treatment with associated chronic dizzy sensations and blurred vision. Her report of blurred vision only improved after she completed a rehabilitation program using fast head impulse rotations towards the affected side for 5 consecutive days. We discuss why we elected this form of treatment and how this method may be useful for different patients.


2003 ◽  
Vol 13 (2-3) ◽  
pp. 131-141 ◽  
Author(s):  
Claire C. Gianna-Poulin ◽  
Valerie Stallings ◽  
F. Owen Black

This study assessed the eye movement responses to active head rotation in six subjects with complete unilateral vestibular loss (UVL), five subjects with posterior canal plugging (PCP) and age- and sex-matched normal subjects. Subjects performed head rotations in the pitch and yaw planes at frequencies ranging from 2 to 6 Hz, while looking at an earth-fixed target. Vertical eye movement gains obtained in UVL, PCP and normal subjects were not significantly different. Vertical phases decreased with increasing head movement frequencies in both UVL and PCP subjects. Although this decrease produced significantly different vertical phases between UVL and normal subjects for head movements above 3.9 Hz, vertical phases in some normal subjects were similar to those obtained in UVL subjects. We conclude that active head oscillations in the pitch plane are not clinically useful for the detection of vertical canal impairment limited to one ear. As expected, UVL subjects showed reduced horizontal gains, and eye velocity asymmetries during active head rotation in the yaw plane. Results in some PCP subjects suggested possible minor impairments of horizontal vestibulo-ocular reflexes.


1996 ◽  
Vol 76 (6) ◽  
pp. 4009-4020 ◽  
Author(s):  
S. T. Aw ◽  
T. Haslwanter ◽  
G. M. Halmagyi ◽  
I. S. Curthoys ◽  
R. A. Yavor ◽  
...  

1. The kinematics of the human angular vestibuloocular reflex (VOR) in three dimensions was investigated in 12 normal subjects during high-acceleration head rotations (head “impulses”). A head impulse is a passive, unpredictable, high-acceleration (3,000–4,000 degrees/s2) head rotation of approximately 10–20 degrees in roll, pitch, or yaw, delivered with the subject in the upright position and focusing on a fixation target. Head and eye rotations were measured with dual search coils and expressed as rotation vectors. The first of these two papers describes a vector analysis of the three-dimensional input-output kinematics of the VOR as two indexes in the time domain: magnitude and direction. 2. Magnitude is expressed as speed gain (G) and direction as misalignment angle (delta). G is defined as the ratio of eye velocity magnitude (eye speed) to head velocity magnitude (head speed). delta is defined as the instantaneous angle by which the eye rotation axis deviates from perfect alignment with the head rotation axis in three dimensions. When the eye rotation axis aligns perfectly with the head rotation axis and when eye velocity is in a direction opposite to head velocity, delta = 0. The orientation of misalignment between the head and the eye rotation axes is characterized by two spatial misalignment angles, which are the projections of delta onto two orthogonal coordinate planes that intersect at the head rotation axis. 3. Time series of G were calculated for head impulses in roll, pitch, and yaw. At 80 ms after the onset of an impulse (i.e., near peak head velocity), values of G were 0.72 +/- 0.07 (counterclockwise) and 0.75 +/- 0.07 (clockwise) for roll impulses, 0.97 +/- 0.05 (up) and 1.10 +/- 0.09 (down) for pitch impulses, and 0.95 +/- 0.06 (right) and 1.01 +/- 0.07 (left) for yaw impulses (mean +/- 95% confidence intervals). 4. The eye rotation axis was well aligned with head rotation axis during roll, pitch, and yaw impulses: delta remained almost constant at approximately 5–10 degrees, so that the spatial misalignment angles were < or = 5 degrees. delta was 9.6 +/- 3.1 (counterclockwise) and 9.0 +/- 2.6 (clockwise) for roll impulses, 5.7 +/- 1.6 (up) and 6.1 +/- 1.9 (down) for pitch impulses, and 6.2 +/- 2.2 (right) and 7.9 +/- 1.5 (left) for yaw impulses (mean +/- 95% confidence intervals). 5. VOR gain (gamma) is the product of G and cos(delta). Because delta is small in normal subjects, gamma is not significantly different from G. At 80 ms after the onset of an impulse, gamma was 0.70 +/- 0.08 (counterclockwise) and 0.74 +/- 0.07 (clockwise) for roll impulses, 0.97 +/- 0.05 (up) and 1.09 +/- 0.09 (down) for pitch impulses, and 0.94 +/- 0.06 (right) and 1.00 +/- 0.07 (left) for yaw impulses (mean +/- 95% confidence intervals). 6. VOR latencies, estimated with a latency shift method, were 10.3 +/- 1.9 (SD) ms for roll impulses, 7.6 +/- 2.8 (SD) ms for pitch impulses, and 7.5 +/- 2.9 (SD) ms for yaw impulses. 7. We conclude that the normal VOR produces eye rotations that are almost perfectly compensatory in direction as well as in speed, but only during yaw and pitch impulses. During roll impulses, eye rotations are well aligned in direction, but are approximately 30% slower in speed.


1991 ◽  
Vol 1 (2) ◽  
pp. 187-197
Author(s):  
G.M. Halmagyi ◽  
I.S. Curthoys ◽  
P.D. Cremer ◽  
C.J. Henderson ◽  
M. Staples

To determine the relative contributions of ampullofugal (AF) and ampullopetal (AP) stimulation of the horizontal semicircular canal (HSCC) to the horizontal vestibulo-ocular reflex (HVOR), 12 patients were studied 1 year after total unilateral vestibular deafferentation (UVD). Compensatory eye movement responses to impulses of horizontal head rotation were studied using magnetic search coils. The head impulses were rapid (up to 3000 deg/sec/sec) passive, unpredictable, step displacements of horizontal angular head position with respect to the trunk. Tbe results from these 12 patients were compared with results from 30 normal subjects. An HVOR deficit was found to each side. The HVOR in response to head impulses toward the deafferented side, a response generated exclusively by ampullofugal stimulation of the single functioning HSCC, was severely deficient with an average gain of 0.25; the HVOR in response to head impulses toward the intact side, a response generated exclusively by ampullopetal stimulation of the single functioning HSCC, was mildly but significantly deficient compared with normal subjects. These results show that rapid, unpredictable head movements, unlike slow, predictable head movements, do demonstrate the AP-AF HVOR asymmetry, which could be expected from consideration of the behavior of single vestibular afferent neurons, an asymmetry that is expressed by Ewald’s 2nd Law.


2004 ◽  
Vol 91 (4) ◽  
pp. 1763-1781 ◽  
Author(s):  
Grace C. Y. Peng ◽  
David S. Zee ◽  
Lloyd B. Minor

We investigated the vestibulo-ocular reflex (VOR) during high-acceleration, yaw-axis, head rotations in 12 normals and 15 patients with vestibular loss [7 unilateral vestibular deficient (UVD) and 8 bilateral vestibular deficient (BVD)]. We analyzed gaze stabilization within a 200-ms window after head rotation began, using phase planes, which allowed simultaneous analysis of gaze velocity and gaze position. These “gaze planes” revealed critical dynamic information not easily gleaned from traditional gain measurements. We found linear relationships between peak gaze-velocity and peak gaze-position error when normalized to peak head speed and position, respectively. Values fell on a continuum, increasing from normals, to normals tested with very high acceleration (VHA = 10,000–20,000°/s2), to UVD patients during rotations toward the intact side, to UVD patients during rotations toward the lesioned side, to BVD patients. We classified compensatory gaze corrections as gaze-position corrections (GPCs) or gaze-velocity error corrections (GVCs). We defined patients as better-compensated when the value of their end gaze position was low relative to peak gaze position. In the gaze plane this criterion corresponded to relatively stereotyped patterns over many rotations, and appearance of high velocity (100–400°/s) GPCs in the gaze plane ending quadrant (150–200 ms after head movement onset). In less-compensated patients, and normals at VHA, more GVCs were generated, and GPCs were generated only after gaze-velocity error was minimized. These findings suggest that challenges to compensatory vestibular function can be from vestibular deficiency or novel stimuli not previously experienced. Similar patterns of challenge and compensation were observed in both patients with vestibular loss and normal subjects.


1994 ◽  
Vol 72 (5) ◽  
pp. 2467-2479 ◽  
Author(s):  
D. Tweed ◽  
D. Sievering ◽  
H. Misslisch ◽  
M. Fetter ◽  
D. Zee ◽  
...  

1. This series of three papers aims to describe the three-dimensional, kinematic input-output relations of the rotational vestibuloocular reflex (VOR) in humans, and to identify the functional advantages of these relations. In this first paper the response to sinusoidal rotation in darkness at 0.3 Hz, maximum speed 37.5%/s, was quantified by the use of the three-dimensional analogue of VOR gain: a 3 x 3 matrix where each element describes the dependence of one component (torsional, vertical, or horizontal) of eye velocity on one component of head velocity. 2. The three matrix elements indicating collinear gains (i.e., dependence of torsional eye velocity on torsional head velocity, vertical on vertical, and horizontal on horizontal) were smaller than the -1's required for optimal retinal image stabilization. Of these three the torsional gain was weakest: -0.37 for rotation about an earth-vertical axis, versus -0.73 and -0.64 for vertical and horizontal gains. Matrix elements indicating cross talk were mostly negligible. There was a tendency to leftward eye rotation in response to clockwise head motion, but this was not statistically significant. 3. VOR responses were compared for rotation about earth-vertical and earth-horizontal axes. The varying otolith input due to the rotation of the gravity vector relative to the head during earth-horizontal axis rotation made no difference to the collinear gains. 4. There were no consistent phase leads or lags except for a torsional phase lead of up to 10 degrees, usually more marked for clock-wise head rotation versus counterclockwise, and for oblique axis rotations versus purely torsional. 5. Torsional gain was magnified, averaging -0.52, when the torsional component of head rotation was only a small part of a predominantly vertical or horizontal rotation, i.e., when the axis of head rotation was near the frontal plane. Because most natural head rotations occur about such axes, the torsional VOR is probably somewhat stronger than the response to pure torsion would suggest. 6. The speed of eye rotation in response to a given stimulus varied widely among subjects, but the direction of rotation was much more uniform. For head rotations about oblique axes out of the frontal plane, there was a systematic misalignment of eye and head axes, with eye axes tilted toward the frontal plane. These findings can be explained on the basis of a strategy where the VOR balances the muscular effort of rotating the eyes against the cost of retinal slip.


1996 ◽  
Vol 76 (6) ◽  
pp. 4021-4030 ◽  
Author(s):  
S. T. Aw ◽  
G. M. Halmagyi ◽  
T. Haslwanter ◽  
I. S. Curthoys ◽  
R. A. Yavor ◽  
...  

1. We studied the three-dimensional input-output human vestibuloocular reflex (VOR) kinematics after selective loss of semicircular canal (SCC) function either through total unilateral vestibular deafferentation (uVD) or through single posterior SCC occlusion (uPCO), and showed large deficits in magnitude and direction in response to high-acceleration head rotations (head “impulses”). 2. A head impulse is a passive, unpredictable, high-acceleration (3,000–4,000 degrees/s2) head rotation through an amplitude of 10–20 degrees in roll, pitch, or yaw. The subjects were tested while seated in the upright position and focusing on a fixation target. Head and eye rotations were measured with the use of dual search coils, and were expressed as rotation vectors. A three-dimensional vector analysis was performed on the input-output VOR kinematics after uVD, to produce two indexes in the time domain: magnitude and direction. Magnitude is expressed as speed gain (G) and direction as misalignment angle (delta). 3. G. after uVD, was significantly lower than normal in both directions of head rotation during roll, pitch, and yaw impulses, and were much lower during ipsilesional than during contralesional roll and yaw impulses. At 80 ms from the onset of an impulse (i.e., near peak head velocity), G was 0.23 +/- 0.08 (SE) (ipsilesional) and 0.56 +/- 0.08 (contralesional) for roll impulses, 0.61 +/- 0.09 (up) and 0.72 +/- 0.10 (down) for pitch impulses, and 0.36 +/- 0.06 (ipsilesional) and 0.76 +/- 0.09 (contralesional) for yaw impulses (mean +/- 95% confidence intervals). 4. delta, after uVD, was significantly different from normal during ipsilesional roll and yaw impulses and during pitch-up and pitch-down impulses. delta was normal during contralesional roll and yaw impulses. At 80 ms from the onset of the impulse, delta was 30.6 +/- 4.5 (ipsilesional) and 13.4 +/- 5.0 (contralesional) for roll impulses, 23.7 +/- 3.7 (up) and 31.6 +/- 4.4 (down) for pitch impulses, and 68.7 +/- 13.2 (ipsilesional) and 11.0 +/- 3.3 (contralesional) for yaw impulses (mean +/- 95% confidence intervals). 5. VOR gain (gamma), after uVD, were significantly lower than normal for both directions of roll, pitch, and yaw impulses and much lower during ipsilesional than during contralesional roll and yaw impulses. At 80 ms from the onset of the head impulse, the gamma was 0.22 +/- 0.08 (ipsilesional) and 0.54 +/- 0.09 (contralesional) for roll impulses, 0.55 +/- 0.09 (up) and 0.61 +/- 0.09 (down) for pitch impulses, and 0.14 +/- 0.10 (ipsilesional) and 0.74 +/- 0.06 (contralesional) for yaw impulses (mean +/- 95% confidence intervals). Because gamma is equal to [G*cos (delta)], it is significantly different from its corresponding G during ipsilesional roll and yaw, and during all pitch impulses, but not during contralesional roll and yaw impulses. 6. After uPCO, pitch-vertical gamma during pitch-up impulses was reduced to the same extent as after uVD; roll-torsional gamma during ipsilesional roll impulses was significantly lower than normal but significantly higher than after uVD. At 80 ms from the onset of the head impulse, gamma was 0.32 +/- 0.13 (ipsilesional) and 0.55 +/- 0.16 (contralesional) for roll impulses, 0.51 +/- 0.12 (up) and 0.91 +/- 0.14 (down) for pitch impulses, and 0.76 +/- 0.06 (ipsilesional) and 0.73 +/- 0.09 (contralesional) for yaw impulses (mean +/- 95% confidence intervals). 7. The eye rotation axis, after uVD, deviates in the yaw plane, away from the normal interaural axis, toward the nasooccipital axis, during all pitch impulses. After uPCO, the eye rotation axis deviates in same direction as after uVD during pitch-up impulses, but is well aligned with the head rotation axis during pitch-down impulses.


Sign in / Sign up

Export Citation Format

Share Document