scholarly journals Intracortical microstimulation of supplementary eye field impairs ability of monkeys to make serially ordered saccades

2014 ◽  
Vol 111 (8) ◽  
pp. 1529-1540 ◽  
Author(s):  
Tamara K. Berdyyeva ◽  
Carl R. Olson

Neurons in the supplementary eye field (SEF) of the macaque monkey exhibit rank selectivity, firing differentially as a function of the phase attained during the performance of a task requiring the execution of saccades to a series of objects in fixed order. The activity of these neurons is commonly thought to represent ordinal position in the service of serial-order performance. However, there is little evidence causally linking neuronal activity in the SEF to sequential behavior. To explore the role of the SEF in serial-order performance, we delivered intracortical microstimulation while monkeys performed a task requiring them to make saccades to three objects in a fixed order on each trial. Microstimulation, considered on average across all SEF sites and all phases of the trial, affected saccadic kinematics. In particular, it prolonged the reaction time, increased the peak velocity, and slightly increased the amplitude of saccades. In addition, it interfered with the monkeys' ability to select the target appropriate to a given phase of the trial. The pattern of the errors was such as would be expected if microstimulation shifted the neural representation of ordinal position toward a later phase of the trial.

2011 ◽  
Vol 105 (5) ◽  
pp. 2547-2559 ◽  
Author(s):  
Tamara K. Berdyyeva ◽  
Carl R. Olson

Neurons in several areas of the monkey frontal cortex exhibit rank selectivity, firing differentially as a function of the stage attained during the performance of a serial order task. The activity of these neurons is commonly thought to represent ordinal position within the trial. However, they might also be sensitive to factors correlated with ordinal position including time elapsed during the trial (which is greater for each successive stage) and the degree of anticipation of reward (which probably increases at each successive stage). To compare the influences of these factors, we monitored neuronal activity in the supplementary motor area (SMA), presupplementary motor area (pre-SMA), supplementary eye field (SEF), and dorsolateral prefrontal cortex during the performance of a serial order task (requiring a series of saccades in three specified directions), a variable reward task (in which a cue displayed early in the trial indicated whether the reward received at the end of the trial would be large or small), and a long delay task (in which the monkey had simply to maintain fixation during a period of time approximating the duration of an average trial in the serial order task). We found that rank signals were partially correlated with sensitivity to elapsed time and anticipated reward. The connection to elapsed time was strongest in the pre-SMA. The connection to anticipated reward was most pronounced in the SMA and SEF. However, critically, these factors could not fully explain rank selectivity in any of the areas tested.


2000 ◽  
Vol 83 (4) ◽  
pp. 2392-2411 ◽  
Author(s):  
Carl R. Olson ◽  
Léon Tremblay

Many neurons in the supplementary eye field (SEF) of the macaque monkey fire at different rates before eye movements to the right or the left end of a horizontal bar regardless of the bar's location in the visual field. We refer to such neurons as carrying object-centered directional signals. The aim of the present study was to throw light on the nature of object-centered direction selectivity by determining whether it depends on the reference image's physical continuity. To address this issue, we recorded from 143 neurons in two monkeys. All of these neurons were located in a region coincident with the SEF as mapped out in previous electrical stimulation studies and many exhibited task-related activity in a standard saccade task. In each neuron, we compared neuronal activity across trials in which the monkey made eye movements to the right or left end of a reference image. On interleaved trials, the reference image might be either a horizontal bar or a pair of discrete dots in a horizontal array. The dominant effect revealed by this experiment was that neurons selectively active before eye movements to the right (or left) end of a bar were also selectively active before eye movements to the right (or left) dot in a horizontal array. An additional minor effect, present in around a quarter of the sample, took the form of a difference in firing rate between bar and dot trials, with the greater level of activity most commonly associated with dot trials. These phenomena could not be accounted for by minor intertrial differences in the physical directions of eye movements. In summary, SEF neurons carry object-centered signals and carry these signals regardless of whether the reference image is physically continuous or disjunct.


1997 ◽  
Vol 113 (1) ◽  
pp. 180-185 ◽  
Author(s):  
Leopoldo Bon ◽  
Cristina Lucchetti

1999 ◽  
Vol 81 (5) ◽  
pp. 2340-2346 ◽  
Author(s):  
Carl R. Olson ◽  
Sonya N. Gettner

Macaque SEF neurons encode object-centered directions of eye movements regardless of the visual attributes of instructional cues. Neurons in the supplementary eye field (SEF) of the macaque monkey exhibit object-centered direction selectivity in the context of a task in which a spot flashed on the right or left end of a sample bar instructs a monkey to make an eye movement to the right or left end of a target bar. To determine whether SEF neurons are selective for the location of the cue, as defined relative to the sample bar, or, alternatively, for the location of the target, as defined relative to the target bar, we carried out recording while monkeys performed a new task. In this task, the color of a cue-spot instructed the monkey to which end of the target bar an eye movement should be made (blue for the left end and yellow for the right end). Object-centered direction selectivity persisted under this condition, indicating that neurons are selective for the location of the target relative to the target bar. However, object-centered signals developed at a longer latency (by ∼200 ms) when the instruction was conveyed by color than when it was conveyed by the location of a spot on a sample bar.


2007 ◽  
Vol 45 (5) ◽  
pp. 997-1008 ◽  
Author(s):  
Andrew Parton ◽  
Parashkev Nachev ◽  
Timothy L. Hodgson ◽  
Dominic Mort ◽  
David Thomas ◽  
...  

2010 ◽  
Vol 104 (1) ◽  
pp. 141-159 ◽  
Author(s):  
Tamara K. Berdyyeva ◽  
Carl R. Olson

Neurons in several areas of monkey frontal cortex exhibit ordinal position (rank) selectivity during the performance of serial order tasks. It has been unclear whether rank selectivity or the dependence of rank selectivity on task context varies across the areas of frontal cortex. To resolve this issue, we recorded from neurons in the supplementary motor area (SMA), presupplementary motor area (pre-SMA), supplementary eye field (SEF), and dorsolateral prefrontal cortex (dlPFC) as monkeys performed two oculomotor tasks, one requiring the selection of three actions in sequence and the other requiring the selection of three objects in sequence. We found that neurons representing all ranks were present in all areas. Only to a moderate degree did the prevalence and nature of rank selectivity vary from area to area. The two most prominent inter-area differences involved a lower prevalence of rank selectivity in the dlPFC than in the other areas and a higher proportion of neurons preferring late ranks in the SMA and SEF than in the other areas. Neurons in all four areas are rank generalists in the sense of favoring the same rank in both the serial action task and the serial object task.


Sign in / Sign up

Export Citation Format

Share Document