Supplementary eye field as defined by intracortical microstimulation: Connections in macaques

1990 ◽  
Vol 293 (2) ◽  
pp. 299-330 ◽  
Author(s):  
Michael F. Huerta ◽  
Jon H. Kaas
2014 ◽  
Vol 111 (8) ◽  
pp. 1529-1540 ◽  
Author(s):  
Tamara K. Berdyyeva ◽  
Carl R. Olson

Neurons in the supplementary eye field (SEF) of the macaque monkey exhibit rank selectivity, firing differentially as a function of the phase attained during the performance of a task requiring the execution of saccades to a series of objects in fixed order. The activity of these neurons is commonly thought to represent ordinal position in the service of serial-order performance. However, there is little evidence causally linking neuronal activity in the SEF to sequential behavior. To explore the role of the SEF in serial-order performance, we delivered intracortical microstimulation while monkeys performed a task requiring them to make saccades to three objects in a fixed order on each trial. Microstimulation, considered on average across all SEF sites and all phases of the trial, affected saccadic kinematics. In particular, it prolonged the reaction time, increased the peak velocity, and slightly increased the amplitude of saccades. In addition, it interfered with the monkeys' ability to select the target appropriate to a given phase of the trial. The pattern of the errors was such as would be expected if microstimulation shifted the neural representation of ordinal position toward a later phase of the trial.


1995 ◽  
Vol 74 (5) ◽  
pp. 2204-2210 ◽  
Author(s):  
J. R. Tian ◽  
J. C. Lynch

1. Intracortical microstimulation was used to map the supplementary eye field (SEF) in eight hemispheres of five Cebus apella monkeys. Monkeys were immobilized during experiments with Telazol (tiletamine HCl and zolazepam HCl), a dissociative anesthetic agent that was demonstrated to have no significant effect on microstimulation-induced eye movement parameters compared with similar experiments in alert, behaviorally trained monkeys. The functional subregions were defined with the use of low-threshold current (< or = 50 microA). Electrically elicited eye movements were videotaped and quantified. Both slow and saccadic eye movements were reliably evoked at low threshold by microstimulation in each of eight hemispheres studied. The two types of eye movements were clearly distinguished by their significantly different duration and velocity (P < 0.0001) and their different responses to long stimulus trains. The results strongly support the proposal that the SEF produces not only saccadic eye movements as previously reported but also slow (pursuit) eye movements.


1996 ◽  
Vol 75 (5) ◽  
pp. 2187-2191 ◽  
Author(s):  
H. Mushiake ◽  
N. Fujii ◽  
J. Tanji

1. We studied neuronal activity in the supplementary eye field (SEF) and frontal eye field (FEF) of a monkey during performance of a conditional motor task that required capturing of a target either with a saccadic eye movement (the saccade-only condition) or with an eye-hand reach (the saccade-and-reach condition), according to visual instructions. 2. Among 106 SEF neurons that showed presaccadic activity, more than one-half of them (54%) were active preferentially under the saccade-only condition (n = 12) or under the saccade-and-reach condition (n = 45), while the remaining 49 neurons were equally active in both conditions. 3. By contrast, most (97%) of the 109 neurons in the FEF exhibited approximately equal activity in relation to saccades under the two conditions. 4. The present results suggest the possibility that SEF neurons, at least in part, are involved in signaling whether the motor task is oculomotor or combined eye-arm movements, whereas FEF neurons are mostly related to oculomotor control.


1987 ◽  
Vol 57 (1) ◽  
pp. 179-200 ◽  
Author(s):  
J. Schlag ◽  
M. Schlag-Rey

Electrical microstimulation and unit recording were performed in dorsomedial frontal cortex of four alert monkeys to identify an oculomotor area whose existence had been postulated rostral to the supplementary motor area. Contraversive saccades were evoked from 129 sites by stimulation. Threshold currents were lower than 20 microA in half the tests. Response latencies were usually longer than 50 ms (minimum: 30 ms). Eye movements were occasionally accompanied by blinks, ear, or neck movements. The cortical area yielding these movements was at the superior edge of the frontal lobe just rostral to the region from which limb movements could be elicited. Depending on the site of stimulation, saccades varied between two extremes: from having rather uniform direction and size, to converging toward a goal defined in space. The transition between these extremes was gradual with no evidence that these two types were fundamentally different. From surface to depth of cortex, direction and amplitude of evoked saccades were similar or changed progressively. No clear systematization was found depending on location along rostrocaudal or mediolateral axes of the cortex. The dorsomedial oculomotor area mapped was approximately 7 mm long and 6 mm wide. Combined eye and head movements were elicited from one of ten sites stimulated when the head was unrestrained. In the other nine cases, saccades were not accompanied by head rotation, even when higher currents or longer stimulus trains were applied. Presaccadic unit activity was recorded from 62 cells. Each of these cells had a preferred direction that corresponded to the direction of the movement evoked by local microstimulation. Presaccadic activity occurred with self-initiated as well as visually triggered saccades. It often led self-initiated saccades by more than 300 ms. Recordings made with the head free showed that the firing could not be interpreted as due to attempted head movements. Many dorsomedial cortical neurons responded to photic stimuli, either phasically or tonically. Sustained responses (activation or inhibition) were observed during target fixation. Twenty-one presaccadic units showed tonic changes of activity with fixation. Justification is given for considering the cortical area studied as a supplementary eye field. It shares many common properties with the arcuate frontal eye field. Differences noted in this study include: longer latency of response to electrical stimulation, possibility to evoke saccades converging apparently toward a goal, and long-lead unit activity with spontaneous saccades.


2011 ◽  
Vol 11 (11) ◽  
pp. 529-529
Author(s):  
S. Heinen ◽  
S.-n. Yang ◽  
J. Ford

2019 ◽  
Vol 19 (10) ◽  
pp. 306c
Author(s):  
Steven P Errington ◽  
Amirsaman Sajad ◽  
Jeffrey D Schall

2007 ◽  
Vol 97 (5) ◽  
pp. 3554-3566 ◽  
Author(s):  
David E. Moorman ◽  
Carl R. Olson

Neurons in the macaque supplementary eye field (SEF) fire at different rates in conjunction with planning saccades in different directions. They also exhibit object-centered spatial selectivity, firing at different rates when the target of the saccade is at the left or right end of a horizontal bar. To compare the rate of incidence of the two kinds of signal, and to determine how they combine, we recorded from SEF neurons while monkeys performed a task in which the target (a dot or the left or right end of a horizontal bar) could appear in any visual field quadrant. During the period when the target was visible on the screen and the monkey was preparing to make a saccade, many neurons exhibited selectivity for saccade direction, firing at a rate determined by the direction of the impending saccade irrespective of whether the target was a dot or the end of a bar. On bar trials, many of the same neurons exhibited object-centered selectivity, firing more strongly when the target was at the preferred end of the bar regardless of saccade direction. The rate of incidence of object-centered selectivity (33%) was lower overall than that of saccade-direction selectivity (56%). Signals related to saccade direction and the object-centered location of the target tended to combine additively. The results suggest that the SEF is at a transitional stage between representing the object-centered command and specifying the parameters of the saccade.


2000 ◽  
Vol 83 (4) ◽  
pp. 2392-2411 ◽  
Author(s):  
Carl R. Olson ◽  
Léon Tremblay

Many neurons in the supplementary eye field (SEF) of the macaque monkey fire at different rates before eye movements to the right or the left end of a horizontal bar regardless of the bar's location in the visual field. We refer to such neurons as carrying object-centered directional signals. The aim of the present study was to throw light on the nature of object-centered direction selectivity by determining whether it depends on the reference image's physical continuity. To address this issue, we recorded from 143 neurons in two monkeys. All of these neurons were located in a region coincident with the SEF as mapped out in previous electrical stimulation studies and many exhibited task-related activity in a standard saccade task. In each neuron, we compared neuronal activity across trials in which the monkey made eye movements to the right or left end of a reference image. On interleaved trials, the reference image might be either a horizontal bar or a pair of discrete dots in a horizontal array. The dominant effect revealed by this experiment was that neurons selectively active before eye movements to the right (or left) end of a bar were also selectively active before eye movements to the right (or left) dot in a horizontal array. An additional minor effect, present in around a quarter of the sample, took the form of a difference in firing rate between bar and dot trials, with the greater level of activity most commonly associated with dot trials. These phenomena could not be accounted for by minor intertrial differences in the physical directions of eye movements. In summary, SEF neurons carry object-centered signals and carry these signals regardless of whether the reference image is physically continuous or disjunct.


Sign in / Sign up

Export Citation Format

Share Document