Reliability of robotic transcranial magnetic stimulation motor mapping

2021 ◽  
Vol 125 (1) ◽  
pp. 74-85
Author(s):  
Adrianna Giuffre ◽  
Cynthia K. Kahl ◽  
Ephrem Zewdie ◽  
James G. Wrightson ◽  
Anna Bourgeois ◽  
...  

Robotic transcranial magnetic stimulation (TMS) is a noninvasive and safe tool that produces cortical motor maps—individualized representations of the primary motor cortex (M1) topography—that may reflect developmental and interventional plasticity. This study is the first to evaluate short- and long-term relative and absolute reliability of TMS mapping outcomes at various M1 excitability levels using novel robotic neuronavigated TMS.

2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


NeuroImage ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 500-509 ◽  
Author(s):  
Sergiu Groppa ◽  
Nicole Werner-Petroll ◽  
Alexander Münchau ◽  
Günther Deuschl ◽  
Matthew F.S. Ruschworth ◽  
...  

1995 ◽  
Vol 7 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Leopold J. Streletz ◽  
Jacqueline K. S. Belevich ◽  
Seth M. Jones ◽  
Anju Bhushan ◽  
Suken H. Shah ◽  
...  

2005 ◽  
Vol 11 (3) ◽  
pp. 316-321 ◽  
Author(s):  
J Liepert ◽  
D Mingers ◽  
C Heesen ◽  
T Bäumer ◽  
C Weiller

We investigated electrophysiological correlates of fatigue in patients with multiple sclerosis (MS). Transcranial magnetic stimulation (TMS) was used to explore motor excitability in three groups of subjects: MS patients with fatigue (MS-F), MS patients without fatigue (MS-NF) and healthy control subjects. All participants had to perform a fatiguing hand-grip exercise. TMS was performed prior to and after the exercise. Prior to the motor task, MS-F patients had less inhibition in the primary motor cortex compared to both other groups. Postexercise, intracortical inhibition was still reduced in the MS-F patients compared to the MS-NF patients. In MS-F patients the postexercise time interval for normalization of the motor threshold was correlated with the fatigue severity. We conclude that MS patients with fatigue have an impairment of inhibitory circuits in their primary motor cortex. The results also indicate that fatigue severity is associated with an exercise-induced reduction of membrane excitability.


Sign in / Sign up

Export Citation Format

Share Document