scholarly journals Heterogeneous Integration of Bilateral Whisker Signals by Neurons in Primary Somatosensory Cortex of Awake Rats

2005 ◽  
Vol 93 (5) ◽  
pp. 2966-2973 ◽  
Author(s):  
Michael C. Wiest ◽  
Nick Bentley ◽  
Miguel A. L. Nicolelis

Bilateral single-unit recordings in primary somatosensory cortex (S1) of anesthetized rats have revealed substantial cross talk between cortical hemispheres, suggesting the possibility that behaviorally relevant bilateral integration could occur in S1. To determine the extent of bilateral neural responses in awake animals, we recorded S1 multi- and single-unit activity in head-immobilized rats while stimulating groups of 4 whiskers from the same column on both sides of the head. Results from these experiments confirm the widespread presence of single units responding to tactile stimuli on either side of the face in S1 of awake animals. Quantification of bilateral integration by multiunits revealed both facilitative and suppressive integration of bilateral inputs. Varying the interval between left and right whisker stimuli between 0 and 120 ms showed the temporal integration of bilateral stimuli to be dominated on average by suppression at intervals around 30 ms, in agreement with comparable recordings in anesthetized animals. Contrary to the anesthetized data, in the awake animals we observed a high level of heterogeneity of bilateral responses and a strong interaction between synchronous bilateral stimuli. The results challenge the traditional conception of highly segregated hemispheric processing channels in the rat S1 cortex, and support the hypothesis that callosal cross-projections between the two hemispheres mediate rats' known ability to integrate bilateral whisker signals.

1994 ◽  
Vol 71 (6) ◽  
pp. 2377-2390 ◽  
Author(s):  
L. D. Lin ◽  
G. M. Murray ◽  
B. J. Sessle

1. We have demonstrated recently that reversible, cooling-induced inactivation of the face primary somatosensory cortex (SI) severely impairs the successful performance of a tongue-protrusion task but has relatively minor effects on the performance of a biting task. In an attempt to establish a neuronal correlate for these different behavioral relations, the present study was initiated to document the mechanoreceptive field properties of a population of face SI neurons and their activity during the tongue-protrusion and biting tasks. 2. Within SI, the representation of the face was found immediately lateral to that of the hand, and there was a clear somatotopic pattern of organization within face SI: the periorbital or nose region was located most medially in the face SI, then followed laterally in sequence the representation of the upper lip, lower lip, and intraoral area. A mechanoreceptive field (RF) was identified for 253 neurons, which included 162 “lip RF” neurons receiving mechanosensitive afferent inputs from the upper lip, lower lip, or both; 72 “tongue RF” neurons that received mechanosensitive afferent inputs from the tongue; 11 “periodontium RF” neurons receiving periodontal inputs; and 8 neurons that received inputs from other orofacial regions. 3. Nearly all (249/253) of the face SI neurons responded to light tactile stimuli, and most of them received contralateral inputs (78%) and showed a rapidly adapting (RA) response to tactile stimulation (82%). There was no significant difference in the ratio of slowly adapting (SA) to RA neurons in areas 3b and 1. 4. For 193 neurons studied in one or both of the orofacial tasks, 113 were found, on the basis of histological reconstruction, to be distributed in area 1, 61 in area 3b, and 19 in area 2. 5. The firing rate of most tongue RF (79% of 56) neurons and lip RF (60% of 93) neurons tested was significantly altered during the tongue-protrusion task. Only some (14% of 36 tongue RF neurons and 34% of the 92 lip RF neurons tested) showed a significant change in firing rate during the biting task. Three of 7 periodontium RF neurons studied in the tongue-protrusion task altered their firing rate and 5 of 10 altered their firing rate during the biting task. 6. Most of the 116 face SI neurons studied during both tasks exhibited a preferential relation to the tongue-protrusion task as distinct from the biting task, and none showed task-related activity during the biting task only.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 123 (5) ◽  
pp. 1944-1954 ◽  
Author(s):  
Sergey G. Khasabov ◽  
Hai Truong ◽  
Victoria M. Rogness ◽  
Kevin D. Alloway ◽  
Donald A. Simone ◽  
...  

Processing of information related to itch sensation at the level of cerebral cortex is not well understood. In this first single-unit electrophysiological study of pruriceptive cortical neurons, we show that neurons responsive to noxious and pruritic stimulation of the cheek of the face are concentrated in a small area of the dysgranular cortex, indicating that these neurons encode information related to itch and pain.


2008 ◽  
Vol 100 (1) ◽  
pp. 268-280 ◽  
Author(s):  
Guglielmo Foffani ◽  
John K. Chapin ◽  
Karen A. Moxon

Computational studies are challenging the intuitive view that neurons with broad tuning curves are necessarily less discriminative than neurons with sharp tuning curves. In the context of somatosensory processing, broad tuning curves are equivalent to large receptive fields. To clarify the computational role of large receptive fields for cortical processing of somatosensory information, we recorded ensembles of single neurons from the infragranular forelimb/forepaw region of the rat primary somatosensory cortex while tactile stimuli were separately delivered to different locations on the forelimbs/forepaws under light anesthesia. We specifically adopted the perspective of individual columns/segregates receiving inputs from multiple body location. Using single-trial analyses of many single-neuron responses, we obtained two main results. 1) The responses of even small populations of neurons recorded from within the same estimated column/segregate can be used to discriminate between stimuli delivered to different surround locations in the excitatory receptive fields. 2) The temporal precision of surround responses is sufficiently high for spike timing to add information over spike count in the discrimination between surround locations. This surround spike-timing code (i) is particularly informative when spike count is ambiguous, e.g., in the discrimination between close locations or when receptive fields are large, (ii) becomes progressively more informative as the number of neurons increases, (iii) is a first-spike code, and (iv) is not limited by the assumption that the time of stimulus onset is known. These results suggest that even though large receptive fields result in a loss of spatial selectivity of single neurons, they can provide as a counterpart a sophisticated temporal code based on latency differences in large populations of neurons without necessarily sacrificing basic information about stimulus location.


2000 ◽  
Vol 83 (3) ◽  
pp. 1770-1776 ◽  
Author(s):  
Markus Ploner ◽  
Frank Schmitz ◽  
Hans-Joachim Freund ◽  
Alfons Schnitzler

Processing of tactile stimuli within somatosensory cortices has been shown to be complex and hierarchically organized. However, the precise organization of nociceptive processing within these cortices has remained largely unknown. We used whole-head magnetoencephalography to directly compare cortical responses to stimulation of tactile and nociceptive afferents of the dorsum of the hand in humans. Within the primary somatosensory cortex (SI), nociceptive stimuli activated a single source whereas tactile stimuli activated two sequentially peaking sources. Along the postcentral gyrus, the nociceptive SI source was located 10 mm more medially than the early tactile SI response arising from cytoarchitectonical area 3b and corresponded spatially to the later tactile SI response. Considering a mediolateral location difference between the hand representations of cytoarchitectonical areas 3b and 1, the present results suggest generation of the single nociceptive response in area 1, whereas tactile stimuli activate sequentially peaking sources in areas 3b and 1. Thus nociceptive processing apparently does not share the complex and hierarchical organization of tactile processing subserving elaborated sensory capacities. This difference in the organization of both modalities may reflect that pain perception rather requires reactions to and avoidance of harmful stimuli than sophisticated sensory capacities.


2012 ◽  
Vol 108 (12) ◽  
pp. 3353-3369 ◽  
Author(s):  
Jamie L. Reed ◽  
Pierre Pouget ◽  
Hui-Xin Qi ◽  
Zhiyi Zhou ◽  
Melanie R. Bernard ◽  
...  

The correlated discharges of cortical neurons in primary somatosensory cortex are a potential source of information about somatosensory stimuli. One aspect of neuronal correlations that has not been well studied is how the spatiotemporal properties of tactile stimuli affect the presence and magnitude of correlations. We presented single- and dual-point stimuli with varying spatiotemporal relationships to the hands of three anesthetized owl monkeys and recorded neuronal activity from 100-electrode arrays implanted in primary somatosensory cortex. Correlation magnitudes derived from joint peristimulus time histogram (JPSTH) analysis of single neuron pairs were used to determine the level of spike timing correlations under selected spatiotemporal stimulus conditions. Correlated activities between neuron pairs were commonly observed, and the proportions of correlated pairs tended to decrease with distance between the recorded neurons. Distance between stimulus sites also affected correlations. When stimuli were presented simultaneously at two sites, ∼37% of the recorded neuron pairs showed significant correlations when adjacent phalanges were stimulated, and ∼21% of the pairs were significantly correlated when nonadjacent digits were stimulated. Spatial proximity of paired stimuli also increased the average correlation magnitude. Stimulus onset asynchronies in the paired stimuli had small effects on the correlation magnitude. These results show that correlated discharges between neurons at the first level of cortical processing provide information about the relative locations of two stimuli on the hand.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nicoletta Manzo ◽  
Andrea Guerra ◽  
Margherita Giangrosso ◽  
Daniele Belvisi ◽  
Giorgio Leodori ◽  
...  

Abstract Near-threshold tactile stimuli perception and somatosensory temporal discrimination threshold (STDT) are encoded in the primary somatosensory cortex (S1) and largely depend on alpha and beta S1 rhythm. Transcranial alternating current stimulation (tACS) is a non-invasive neurophysiological technique that allows cortical rhythm modulation. We investigated the effects of tACS delivered over S1 at alpha, beta, and gamma frequencies on near-threshold tactile stimuli perception and STDT, as well as phase-dependent tACS effects on near-threshold tactile stimuli perception in healthy subjects. In separate sessions, we tested the effects of different tACS montages, and tACS at the individualised S1 μ-alpha frequency peak, on STDT and near-threshold tactile stimuli perception. We found that tACS applied over S1 at alpha, beta, and gamma frequencies did not modify STDT or near-threshold tactile stimuli perception. Moreover, we did not detect effects of tACS phase or montage. Finally, tACS did not modify near-threshold tactile stimuli perception and STDT even when delivered at the individualised μ-alpha frequency peak. Our study showed that tACS does not alter near-threshold tactile stimuli or STDT, possibly due to the inability of tACS to activate deep S1 layers. Future investigations may clarify tACS effects over S1 in patients with focal dystonia, whose pathophysiology implicates increased STDT.


1994 ◽  
Vol 71 (6) ◽  
pp. 2401-2413 ◽  
Author(s):  
L. D. Lin ◽  
B. J. Sessle

1. In previous papers we have demonstrated that most single neurons in the face primary somatosensory cortex (SI) alter their firing rate during a trained tongue-protrusion task and some also during a trained biting task. Although the data suggest that some of the task-related activity in face SI might conceivably come from reafferent inputs from moving orofacial structures, it is possible that orofacial inputs are modulated during the trained orofacial movements. This study was initiated to investigate the possible modulation of evoked orofacial somatosensory responses of face SI neurons during trained tongue-protrusion and biting tasks. 2. Two monkeys were trained to perform a tongue-protrusion and a biting task and to accept stimulation applied to the facial skin or the lingual nerve during the tasks. For SI neurons with a tongue mechanoreceptive field (RF), electrical stimulation was applied to the lingual nerve to elicit neuronal activity; for SI neurons with a RF at the other locations, electrical or mechanical stimulation was applied to the RF to elicit neuronal activity. Modulation of neuronal activity evoked by low-threshold stimulation of the RF was tested, during the tongue-protrusion and/or biting tasks, in 44 face SI neurons and an additional 3 forelimb SI neurons with a palm RF (palm RF neurons). The 44 face SI neurons included 13 with a tongue RF (tongue RF neurons), 29 with a lip RF (lip RF neurons), and 2 with a lateral face RF (face RF neurons). 3. For face SI neurons tested during both force dynamic and holding phases of the task period, the evoked activity (i.e., the number of evoked spikes in 50 ms after the onset of stimulation) was decreased in at least one of the two phases for the majority (90%) of 31 neurons studied during the tongue-protrusion task and 61% of 23 studied during the biting task. The proportion of neurons modulated during the tongue-protrusion task was significantly higher than that during the biting task. For the 18 face SI tested during both tasks, a decrease in evoked activity occurred in 10 lip RF neurons for both tasks and in the remaining 5 lip RF and 3 tongue RF neurons for the tongue-protrusion task only. No neurons tested showed a clear facilitation of evoked activity during the task period of either task.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document