scholarly journals Tactile orientation perception: an ideal observer analysis of human psychophysical performance in relation to macaque area 3b receptive fields

2015 ◽  
Vol 114 (6) ◽  
pp. 3076-3096 ◽  
Author(s):  
Ryan M. Peters ◽  
Phillip Staibano ◽  
Daniel Goldreich

The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning.

2000 ◽  
Vol 84 (4) ◽  
pp. 2048-2062 ◽  
Author(s):  
Mitesh K. Kapadia ◽  
Gerald Westheimer ◽  
Charles D. Gilbert

To examine the role of primary visual cortex in visuospatial integration, we studied the spatial arrangement of contextual interactions in the response properties of neurons in primary visual cortex of alert monkeys and in human perception. We found a spatial segregation of opposing contextual interactions. At the level of cortical neurons, excitatory interactions were located along the ends of receptive fields, while inhibitory interactions were strongest along the orthogonal axis. Parallel psychophysical studies in human observers showed opposing contextual interactions surrounding a target line with a similar spatial distribution. The results suggest that V1 neurons can participate in multiple perceptual processes via spatially segregated and functionally distinct components of their receptive fields.


2013 ◽  
Vol 110 (5) ◽  
pp. 1190-1204 ◽  
Author(s):  
Maria Ter-Mikaelian ◽  
Malcolm N. Semple ◽  
Dan H. Sanes

Animal communication sounds contain spectrotemporal fluctuations that provide powerful cues for detection and discrimination. Human perception of speech is influenced both by spectral and temporal acoustic features but is most critically dependent on envelope information. To investigate the neural coding principles underlying the perception of communication sounds, we explored the effect of disrupting the spectral or temporal content of five different gerbil call types on neural responses in the awake gerbil's primary auditory cortex (AI). The vocalizations were impoverished spectrally by reduction to 4 or 16 channels of band-passed noise. For this acoustic manipulation, an average firing rate of the neuron did not carry sufficient information to distinguish between call types. In contrast, the discharge patterns of individual AI neurons reliably categorized vocalizations composed of only four spectral bands with the appropriate natural token. The pooled responses of small populations of AI cells classified spectrally disrupted and natural calls with an accuracy that paralleled human performance on an analogous speech task. To assess whether discharge pattern was robust to temporal perturbations of an individual call, vocalizations were disrupted by time-reversing segments of variable duration. For this acoustic manipulation, cortical neurons were relatively insensitive to short reversal lengths. Consistent with human perception of speech, these results indicate that the stable representation of communication sounds in AI is more dependent on sensitivity to slow temporal envelopes than on spectral detail.


2009 ◽  
Vol 26 (1) ◽  
pp. 109-121 ◽  
Author(s):  
WILSON S. GEISLER ◽  
JEFFREY S. PERRY

AbstractCorrectly interpreting a natural image requires dealing properly with the effects of occlusion, and hence, contour grouping across occlusions is a major component of many natural visual tasks. To better understand the mechanisms of contour grouping across occlusions, we (a) measured the pair-wise statistics of edge elements from contours in natural images, as a function of edge element geometry and contrast polarity, (b) derived the ideal Bayesian observer for a contour occlusion task where the stimuli were extracted directly from natural images, and then (c) measured human performance in the same contour occlusion task. In addition to discovering new statistical properties of natural contours, we found that naïve human observers closely parallel ideal performance in our contour occlusion task. In fact, there was no region of the four-dimensional stimulus space (three geometry dimensions and one contrast dimension) where humans did not closely parallel the performance of the ideal observer (i.e., efficiency was approximately constant over the entire space). These results reject many other contour grouping hypotheses and strongly suggest that the neural mechanisms of contour grouping are tightly related to the statistical properties of contours in natural images.


1992 ◽  
Vol 67 (5) ◽  
pp. 1031-1056 ◽  
Author(s):  
G. H. Recanzone ◽  
M. M. Merzenich ◽  
W. M. Jenkins ◽  
K. A. Grajski ◽  
H. R. Dinse

1. Adult owl monkeys were trained to detect differences in the frequency of a tactile flutter-vibration stimulus above a 20-Hz standard. All stimuli were delivered to a constant skin site restricted to a small part of a segment of one finger. The frequency-difference discrimination performance of all but one of these monkeys improved progressively with training. 2. The distributed responses of cortical neurons ("maps") of the hand surfaces were defined in detail in somatosensory cortical area 3b. Representations of trained hands were compared with those of the opposite, untrained hand, and to the area 3b representations of hands in a second set of monkeys that were stimulated tactually in the same manner while these monkeys were attending to auditory stimuli (passive stimulation controls). 3. The cortical representations of the trained hands were substantially more complex in topographic detail than the representations of unstimulated hands or of passively stimulated control hands. 4. In all well-trained monkeys the representations of the restricted skin location trained in the behavioral task were significantly (1.5 to greater than 3 times) greater in area than were the representations of equivalent skin locations on control digits. However, the overall extents of the representations of behaviorally stimulated fingers were not larger than those of control fingers in the same hemisphere, or in opposite hemisphere controls. 5. The receptive fields representing the trained skin were significantly larger than receptive fields representing control digits in all but one trained monkey. The largest receptive fields were centered in the zone of representation of the behaviorally engaged skin, but they were not limited to it. Large receptive fields were recorded in a 1- to 2-mm-wide zone in the area 3b maps of trained hands. 6. Receptive-field sizes were also statistically significantly larger on at least one adjacent, untrained digit when compared with the receptive fields recorded on the homologous digit of the opposite hand. 7. There was an increase in the percent overlaps of receptive fields in the cortical zone of representation of the trained skin. A significant number of receptive fields were centered on the behaviorally trained skin site. 8. The effects of increased topographic complexity, increased representation of the trained skin location, increased receptive-field size, and increased receptive-field overlap were not observed in the representations of the untrained hands in these same monkeys. Only modest increases in topographic complexity were recorded in the representations of passively stimulated hands, and no effects on receptive-field size or overlap were noted.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 2020 (16) ◽  
pp. 41-1-41-7
Author(s):  
Orit Skorka ◽  
Paul J. Kane

Many of the metrics developed for informational imaging are useful in automotive imaging, since many of the tasks – for example, object detection and identification – are similar. This work discusses sensor characterization parameters for the Ideal Observer SNR model, and elaborates on the noise power spectrum. It presents cross-correlation analysis results for matched-filter detection of a tribar pattern in sets of resolution target images that were captured with three image sensors over a range of illumination levels. Lastly, the work compares the crosscorrelation data to predictions made by the Ideal Observer Model and demonstrates good agreement between the two methods on relative evaluation of detection capabilities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jermyn Z. See ◽  
Natsumi Y. Homma ◽  
Craig A. Atencio ◽  
Vikaas S. Sohal ◽  
Christoph E. Schreiner

AbstractNeuronal activity in auditory cortex is often highly synchronous between neighboring neurons. Such coordinated activity is thought to be crucial for information processing. We determined the functional properties of coordinated neuronal ensembles (cNEs) within primary auditory cortical (AI) columns relative to the contributing neurons. Nearly half of AI cNEs showed robust spectro-temporal receptive fields whereas the remaining cNEs showed little or no acoustic feature selectivity. cNEs can therefore capture either specific, time-locked information of spectro-temporal stimulus features or reflect stimulus-unspecific, less-time specific processing aspects. By contrast, we show that individual neurons can represent both of those aspects through membership in multiple cNEs with either high or absent feature selectivity. These associations produce functionally heterogeneous spikes identifiable by instantaneous association with different cNEs. This demonstrates that single neuron spike trains can sequentially convey multiple aspects that contribute to cortical processing, including stimulus-specific and unspecific information.


Vision ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 18
Author(s):  
Olga Lukashova-Sanz ◽  
Siegfried Wahl ◽  
Thomas S. A. Wallis ◽  
Katharina Rifai

With rapidly developing technology, visual cues became a powerful tool for deliberate guiding of attention and affecting human performance. Using cues to manipulate attention introduces a trade-off between increased performance in cued, and decreased in not cued, locations. For higher efficacy of visual cues designed to purposely direct user’s attention, it is important to know how manipulation of cue properties affects attention. In this verification study, we addressed how varying cue complexity impacts the allocation of spatial endogenous covert attention in space and time. To gradually vary cue complexity, the discriminability of the cue was systematically modulated using a shape-based design. Performance was compared in attended and unattended locations in an orientation-discrimination task. We evaluated additional temporal costs due to processing of a more complex cue by comparing performance at two different inter-stimulus intervals. From preliminary data, attention scaled with cue discriminability, even for supra-threshold cue discriminability. Furthermore, individual cue processing times partly impacted performance for the most complex, but not simpler cues. We conclude that, first, cue complexity expressed by discriminability modulates endogenous covert attention at supra-threshold cue discriminability levels, with increasing benefits and decreasing costs; second, it is important to consider the temporal processing costs of complex visual cues.


1992 ◽  
Vol 68 (2) ◽  
pp. 518-527 ◽  
Author(s):  
T. P. Pons ◽  
P. E. Garraghty ◽  
M. Mishkin

1. Selective ablations of the hand representations in postcentral cortical areas 3a, 3b, 1, and 2 were made in different combinations to determine each area's contribution to the responsivity and modality properties of neurons in the hand representation in SII. 2. Ablations that left intact only the postcentral areas that process predominantly cutaneous inputs (i.e., areas 3b and 1) yielded SII recording sites responsive to cutaneous stimulation and none driven exclusively by high-intensity or "deep" stimulation. Conversely, ablations that left intact only the postcentral areas that process predominantly deep receptor inputs (i.e., areas 3a and 2) yielded mostly SII recording sites that responded exclusively to deep stimulation. 3. Ablations that left intact only area 3a or only area 2 yielded substantial and roughly equal reductions in the number of deep receptive fields in SII. By contrast, ablations that left intact only area 3b or only area 1 yielded unequal reductions in the number of cutaneous receptive fields in SII: a small reduction when area 3b alone was intact but a somewhat larger one when only area 1 was intact. 4. Finally, when the hand representation in area 3b was ablated, leaving areas 3a, 1, and 2 fully intact, there was again a substantial reduction in the encounter rate of cutaneous receptive fields. 5. The partial ablations often led to unresponsive sites in the SII hand representation. In SII representations other than of the hand no such unresponsive sites were found and there were no substantial changes in the ratio of cutaneous to deep receptive fields, indicating that the foregoing results were not due to long-lasting postsurgical depression or effects of anesthesia. 6. The findings indicate that modality-specific information is relayed from postcentral cortical areas to SII along parallel channels, with cutaneous inputs transmitted via areas 3b and 1, and deep inputs via areas 3a and 2. Further, area 3b provides the major source of cutaneous input to SII, directly and perhaps also via area 1. 7. The results are in line with accumulating anatomic and electrophysiologic evidence pointing to an evolutionary shift in the organization of the somatosensory system from the general mammalian plan, in which tactile information is processed in parallel in SI and SII, to a new organization in higher primates in which the processing of tactile information proceeds serially from SI to SII. The presumed functional advantages of this evolutionary shift are unknown.


Sign in / Sign up

Export Citation Format

Share Document