scholarly journals Information diversity in individual auditory cortical neurons is associated with functionally distinct coordinated neuronal ensembles

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jermyn Z. See ◽  
Natsumi Y. Homma ◽  
Craig A. Atencio ◽  
Vikaas S. Sohal ◽  
Christoph E. Schreiner

AbstractNeuronal activity in auditory cortex is often highly synchronous between neighboring neurons. Such coordinated activity is thought to be crucial for information processing. We determined the functional properties of coordinated neuronal ensembles (cNEs) within primary auditory cortical (AI) columns relative to the contributing neurons. Nearly half of AI cNEs showed robust spectro-temporal receptive fields whereas the remaining cNEs showed little or no acoustic feature selectivity. cNEs can therefore capture either specific, time-locked information of spectro-temporal stimulus features or reflect stimulus-unspecific, less-time specific processing aspects. By contrast, we show that individual neurons can represent both of those aspects through membership in multiple cNEs with either high or absent feature selectivity. These associations produce functionally heterogeneous spikes identifiable by instantaneous association with different cNEs. This demonstrates that single neuron spike trains can sequentially convey multiple aspects that contribute to cortical processing, including stimulus-specific and unspecific information.

2011 ◽  
Vol 105 (4) ◽  
pp. 1908-1917 ◽  
Author(s):  
Jonathan Y. Shih ◽  
Craig A. Atencio ◽  
Christoph E. Schreiner

We analyzed the receptive field information conveyed by interspike intervals (ISIs) in the auditory cortex. In the visual system, different ISIs may both code for different visual features and convey differing amounts of stimulus information. To determine their potential role in auditory signal processing, we obtained extracellular recordings in the primary auditory cortex (AI) of the cat while presenting a dynamic moving ripple stimulus and then used the responses to construct spectrotemporal receptive fields (STRFs). For each neuron, we constructed three STRFs, one for short-ISI events (ISI < 15 ms); one for isolated, long-ISI events (ISI > 15 ms); and one including all events. To characterize stimulus encoding, we calculated the feature selectivity and event information for each of the STRFs. Short-ISI spikes were more feature selective and conveyed information more efficiently. The different ISI regimens of AI neurons did not represent different stimulus features, but short-ISI spike events did contribute over-proportionately to the full spike train STRF information. Thus short-ISIs constitute a robust representation of auditory features, and they are particularly effective at driving postsynaptic activity. This suggests that short-ISI events are especially suited to provide noise immunity and high-fidelity information transmission in AI.


2017 ◽  
Author(s):  
Bartosz Teleńczuk ◽  
Richard Kempter ◽  
Gabriel Curio ◽  
Alain Destexhe

AbstractNeurons in the primary somatosensory cortex (S1) respond to peripheral stimulation with synchronised bursts of spikes, which lock to the macroscopic 600 Hz EEG waves. The mechanism of burst generation and synchronisation in S1 is not yet understood. Using models of single-neuron responses fitted to unit recordings from macaque monkeys, we show that these synchronised bursts are the consequence of correlated synaptic inputs combined with a refractory mechanism. In the presence of noise these models reproduce also the observed trial-to-trial response variability, where individual bursts represent one of many stereotypical temporal spike patterns. When additional slower and global excitability fluctuations are introduced the single-neuron spike patterns are correlated with the population activity, as demonstrated in experimental data. The underlying biophysical mechanism of S1 responses involves thalamic inputs arriving through depressing synapses to cortical neurons in a high-conductance state. Our findings show that a simple feedforward processing of peripheral inputs could give rise to neuronal responses with non-trivial temporal and population statistics. We conclude that neural systems could use refractoriness to encode variable cortical states into stereotypical short-term spike patterns amenable to processing at neuronal time scales (tens of milliseconds).Significance statementNeurons in the hand area of the primary somatosensory cortex respond to repeated presentation of the same stimulus with variable sequences of spikes, which can be grouped into distinct temporal spike patterns. In a simplified model, we show that such spike patterns are product of synaptic inputs and intrinsic neural properties. This model can reproduce both single-neuron and population responses only when a private variability in each neuron is combined with a multiplicative gain shared over whole population, which fluctuates over trials and might represent the dynamical state of the early stages of sensory processing. This phenomenon exemplifies a general mechanism of transforming the ensemble cortical states into precise temporal spike patterns at the level of single neurons.


2015 ◽  
Vol 114 (6) ◽  
pp. 3076-3096 ◽  
Author(s):  
Ryan M. Peters ◽  
Phillip Staibano ◽  
Daniel Goldreich

The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


2021 ◽  
Vol 118 (49) ◽  
pp. e2115772118
Author(s):  
Aneesha K. Suresh ◽  
Charles M. Greenspon ◽  
Qinpu He ◽  
Joshua M. Rosenow ◽  
Lee E. Miller ◽  
...  

Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures—the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Bram-Ernst Verhoef ◽  
John HR Maunsell

Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround.


2017 ◽  
Vol 284 (1862) ◽  
pp. 20170969 ◽  
Author(s):  
Brandon Pratt ◽  
Tanvi Deora ◽  
Thomas Mohren ◽  
Thomas Daniel

Flying insects use feedback from various sensory modalities including vision and mechanosensation to navigate through their environment. The rapid speed of mechanosensory information acquisition and processing compensates for the slower processing times associated with vision, particularly under low light conditions. While halteres in dipteran species are well known to provide such information for flight control, less is understood about the mechanosensory roles of their evolutionary antecedent, wings. The features that wing mechanosensory neurons (campaniform sensilla) encode remains relatively unexplored. We hypothesized that the wing campaniform sensilla of the hawkmoth, Manduca sexta, rapidly and selectively extract mechanical stimulus features in a manner similar to halteres. We used electrophysiological and computational techniques to characterize the encoding properties of wing campaniform sensilla. To accomplish this, we developed a novel technique for localizing receptive fields using a focused IR laser that elicits changes in the neural activity of mechanoreceptors. We found that (i) most wing mechanosensors encoded mechanical stimulus features rapidly and precisely, (ii) they are selective for specific stimulus features, and (iii) there is diversity in the encoding properties of wing campaniform sensilla. We found that the encoding properties of wing campaniform sensilla are similar to those for haltere neurons. Therefore, it appears that the neural architecture that underlies the haltere sensory function is present in wings, which lends credence to the notion that wings themselves may serve a similar sensory function. Thus, wings may not only function as the primary actuator of the organism but also as sensors of the inertial dynamics of the animal.


2008 ◽  
Vol 100 (2) ◽  
pp. 646-656 ◽  
Author(s):  
Ben Scholl ◽  
Michael Wehr

Sensory deafferentation results in rapid shifts in the receptive fields of cortical neurons, but the synaptic mechanisms underlying these changes remain unknown. The rapidity of these shifts has led to the suggestion that subthreshold inputs may be unmasked by a selective loss of inhibition. To study this, we used in vivo whole cell recordings to directly measure tone-evoked excitatory and inhibitory synaptic inputs in auditory cortical neurons before and after acoustic trauma. Here we report that acute acoustic trauma disrupted the balance of excitation and inhibition by selectively increasing and reducing the strength of inhibition at different positions within the receptive field. Inhibition was abolished for frequencies far below the trauma-tone frequency but was markedly enhanced near the edges of the region of elevated peripheral threshold. These changes occurred for relatively high-level tones. These changes in inhibition led to an expansion of receptive fields but not by a simple unmasking process. Rather, membrane potential responses were delayed and prolonged throughout the receptive field by distinct interactions between synaptic excitation and inhibition. Far below the trauma-tone frequency, decreased inhibition combined with prolonged excitation led to increased responses. Near the edges of the region of elevated peripheral threshold, increased inhibition served to delay rather than abolish responses, which were driven by prolonged excitation. These results show that the rapid receptive field shifts caused by acoustic trauma are caused by distinct mechanisms at different positions within the receptive field, which depend on differential disruption of excitation and inhibition.


2008 ◽  
Vol 99 (1) ◽  
pp. 356-366 ◽  
Author(s):  
Michael Shoykhet ◽  
Daniel J. Simons

Extracellular single-unit recordings were used to characterize responses of thalamic barreloid and cortical barrel neurons to controlled whisker deflections in 2, 3-, and 4-wk-old and adult rats in vivo under fentanyl analgesia. Results indicate that response properties of thalamic and cortical neurons diverge during development. Responses to deflection onsets and offsets among thalamic neurons mature in parallel, whereas among cortical neurons responses to deflection offsets become disproportionately smaller with age. Thalamic neuron receptive fields become more multiwhisker, whereas those of cortical neurons become more single-whisker. Thalamic neurons develop a higher degree of angular selectivity, whereas that of cortical neurons remains constant. In the temporal domain, response latencies decrease both in thalamic and cortical neurons, but the maturation time-course differs between the two populations. Response latencies of thalamic cells decrease primarily between 2 and 3 wk of life, whereas response latencies of cortical neurons decrease in two distinct steps—the first between 2 and 3 wk of life and the second between the fourth postnatal week and adulthood. Although the first step likely reflects similar subcortical changes, the second phase likely corresponds to developmental myelination of thalamocortical fibers. Divergent development of thalamic and cortical response properties indicates that thalamocortical circuits in the whisker-to-barrel pathway undergo protracted maturation after 2 wk of life and provides a potential substrate for experience-dependent plasticity during this time.


1983 ◽  
Vol 50 (6) ◽  
pp. 1479-1496 ◽  
Author(s):  
D. R. Kenshalo ◽  
O. Isensee

Recordings were made from single SI cortical neurons in the anesthetized macaque monkey. Each isolated cortical neuron was tested for responses to a standard series of mechanical stimuli. The stimuli included brushing the skin, pressure, and pinch. The majority of cortical neurons responded with the greatest discharge frequency to brushing the receptive field, but neurons were found in areas 3b and 1 that responded maximally to pinching the receptive field. A total of 68 cortical nociceptive neurons were examined in 10 animals. Cortical neurons that responded maximally to pinching the skin were also tested for responses to graded noxious heat pulses (from 35 to 43, 45, 47, and 50 degrees C). If the neuron failed to respond or only responded to 50 degrees C, the receptive field was also heated to temperatures of 53 and 55 degrees C. Fifty-six of the total population of nociceptive neurons were tested for responses to the complete series of noxious heat pulses: 46 (80%) exhibited a progressive increase in the discharge frequency as a function of stimulus intensity, and the spontaneous activity of two (4%) was inhibited. One population of cortical nociceptive neurons possessed restricted, contralateral receptive fields. These cells encoded the intensity of noxious mechanical and thermal stimulation. Sensitization of primary afferent nociceptors was reflected in the responses of SI cortical nociceptive neurons when the ascending series of noxious thermal stimulation was repeated. The population of cortical nociceptive neurons with restricted receptive fields exhibited no adaptation in the response during noxious heat pulses of 47 and 50 degrees C. At higher temperatures the response often continued to increase during the stimulus. The other population of cortical nociceptive neurons was found to have restricted, low-threshold receptive fields on the contralateral hindlimb and, in addition, could be activated only by intense pinching or noxious thermal stimuli delivered on any portion of the body. The stimulus-response functions obtained from noxious thermal stimulation of the contralateral hindlimb were not different from cortical nociceptive neurons with small receptive fields. However, nociceptive neurons with large receptive fields exhibited a consistent adaptation during a noxious heat pulse of 47 and 50 degrees C. Based on the response characteristics of these two populations of cortical nociceptive neurons, we conclude that neurons with small receptive fields possess the ability to provide information about the localization, the intensity, and the temporal attributes of a noxious stimulus.4+.


Sign in / Sign up

Export Citation Format

Share Document