Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by non-visual input

Author(s):  
Alexander Fanning ◽  
Amin Shakhawat ◽  
Jennifer L Raymond

The climbing fiber input to the cerebellum conveys instructive signals that can induce synaptic plasticity and learning by triggering complex spikes accompanied by large calcium transients in Purkinje cells. In the cerebellar flocculus, which supports oculomotor learning, complex spikes are driven by image motion on the retina, which could indicate an oculomotor error. In the same neurons, complex spikes also can be driven by non-visual signals. It has been shown that the calcium transients accompanying each complex spike can vary in amplitude, even within a given cell, therefore, we compared the calcium responses associated with the visual and non-visual inputs to floccular Purkinje cells. The calcium indicator GCaMP6f was selectively expressed in Purkinje cells, and fiber photometry was used to record the calcium responses from a population of Purkinje cells in the flocculus of awake behaving mice. During visual (optokinetic) stimuli and pairing of vestibular and visual stimuli, the calcium level increased during contraversive retinal image motion. During performance of the vestibulo-ocular reflex in the dark, calcium increased during contraversive head rotation and the associated ipsiverse eye movements. The amplitude of this non-visual calcium response was comparable to that during conditions with retinal image motion present that induce oculomotor learning. Thus, population calcium responses of Purkinje cells in the cerebellar flocculus to visual and non-visual input are similar to what has been reported previously for complex spikes, suggesting that multimodal instructive signals control the synaptic plasticity supporting oculomotor learning.

1994 ◽  
Vol 71 (4) ◽  
pp. 1336-1350 ◽  
Author(s):  
H. Fushiki ◽  
Y. Sato ◽  
A. Miura ◽  
T. Kawasaki

1. The complex spike (CS) of the floccular Purkinje cell has been reported to be driven by retinal image movement in the rabbit, the rat, and the monkey, but not yet in the cat, in which the floccular neuronal network is well known. We recorded the CS activity together with concomitant simple spike (SS) activity of the floccular Purkinje cells that responded to large-field visual pattern movement in the anesthetized cat. 2. On the basis of the direction selectivity we divided the cells into two major types: the horizontal type that preferred horizontal stimuli and the vertical type that preferred vertical stimuli. The CS activity of the horizontal-type cell increased during stimuli directed contralaterally to the recording site and decreased during ipsilaterally directed stimuli, whereas that of the vertical-type cell increased during upward stimuli and decreased during downward stimuli. 3. In both types the CS response was larger at lower-velocity stimuli and the response was well maintained at higher-velocity stimuli < or = 180 degrees/s tested. The mean response decline was only 50% at stimulus velocities 90-150 degrees/s compared with the response amplitude at 2 degrees/s stimulus velocity. 4. The majority of the horizontal-type cells were modulated by the stimuli presented to either eye and the dominant eye was ipsilateral to the recording site. The majority of the vertical-type cells were also modulated by the stimuli presented to either eye without obvious differences between two eyes. 5. In both types the receptive field of the ipsilateral eye always included the area centralis and extended widely on both visual hemifields. The receptive field of the contralateral eye also included the area centralis and was usually restricted within the ipsilateral visual hemifield. The stimuli of small visual field (15 degrees x 15 degrees) projecting to the area centralis evoked especially large responses (70% of the full-screen response). 6. The CS and SS responses were reciprocal to each other, that is, when the CS firing increased the SS firing decreased and vice versa. 7. These CS responses are well suited for the direction detection of large-field retinal image motion at a wide velocity range. In light of the present unitary spike data together with the anatomic and eye movement data reported previously, we conclude that the cat flocculus is responsible for reduction of the large-field retinal image motion by producing eye movement in the same direction with the visual motion.


2000 ◽  
Vol 78 (2) ◽  
pp. 131-142 ◽  
Author(s):  
James W. Ness ◽  
Harry Zwick ◽  
Bruce E. Stuck ◽  
David J. Lurid ◽  
Brian J. Lurid ◽  
...  

1990 ◽  
Vol 63 (5) ◽  
pp. 999-1009 ◽  
Author(s):  
Z. Kapoula ◽  
L. M. Optican ◽  
D. A. Robinson

1. In these experiments, postsaccadic ocular drift was induced by postsaccadic motion of the visual scene. In the most important case, the scene was moved in one eye but not the other. Six human subjects viewed the interior of a full-field hemisphere filled with a random-dot pattern. During training, eye movements were recorded by the electrooculogram. A computer detected the end of every saccade and immediately moved the pattern horizontally in the same or, in different experiments, in the opposite direction as the saccade. The pattern motion was exponential with an amplitude of 25% of the size of the antecedent saccade and a time constant of 50 ms. Before and after 3-4 h of such training, movements of both eyes were measured simultaneously by the eye coil-magnetic field method while subjects looked between stationary targets for calibration, explored the visual pattern with saccades, or made saccades in the dark to measure the effects of adaptation on postsaccadic ocular drift. The amplitude of this drift was expressed as a percentage of the size of the antecedent saccade. 2. In monocular experiments, subjects viewed the random-dot pattern with one eye. The other eye was patched. With two subjects, the pattern drifted backward in the direction opposite to the saccade; with the third, it drifted onward. The induced ocular drift was exponential, always in the direction to reduce retinal image motion, had zero latency, and persisted in the dark. After training, drift in the dark changed by 6.7% in agreement with our prior study with binocular vision, which produced a change of 6.0%. 3. In a dichoptic arrangement, one eye regarded the moveable random-dot pattern; the other, through mirrors, saw a different random-dot pattern (with similar spacing, contrast, and distance) that was stationary. These visual patterns were not fuseable and did not evoke subjective diplopia. In this case, the induced change in postsaccadic drift in the same three subjects was only 4.8%. In all cases the changes in postsaccadic drift were conjugate--they obeyed Hering's law. 4. Normal human saccades are characterized by essentially no postsaccadic drift in the abducting eye and a pronounced onward drift (approximately 4%) in the adducting eye. After training, this abduction-adduction asymmetry was preserved in the light and dark with monocular or dichoptic viewing, indicating again that all adaptive changes were conjugate. 5. When the subjects viewed the adapting stimulus after training, the zero-latency, postsaccadic drift always increased from levels in the dark.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 84 (6) ◽  
pp. 2945-2960 ◽  
Author(s):  
Maninder Kahlon ◽  
Stephen G. Lisberger

We followed simple- and complex-spike firing of Purkinje cells (PCs) in the floccular complex of the cerebellum through learned modifications of the pursuit eye movements of two monkeys. Learning was induced by double steps of target speed in which initially stationary targets move at a “learning” speed for 100 ms and then change to either a higher or lower speed in the same direction. In randomly interleaved control trials, targets moved at the learning speed in the opposite direction. When the learning direction was theon direction for simple-spike responses, learning was associated with statistically significant changes in simple-spike firing for 10 of 32 PCs. Of the 10 PCs that showed significant expressions of learning, 8 showed changes in simple-spike output in the expected direction: increased or decreased firing when eye acceleration increased or decreased through learning. There were no statistically significant changes in simple-spike responses or eye acceleration during pursuit in the control direction. When the learning direction was in the off direction for simple-spike responses, none of 15 PCs showed significant correlates of learning. Although changes in simple-spike firing were recorded in only a subset of PCs, analysis of the population response showed that the same relationship between population firing and eye acceleration obtained before and after learning. Thus learning is associated with changes that render the modified population response appropriate to drive the changed behavior. To analyze complex-spike firing during learning we correlated complex-spike firing in the second, third, and fourth 100 ms after the onset of target motion with the retinal image motion in the previous 100 ms. Data were largely consistent with previous evidence that image motion drives complex spikes with a direction selectivity opposite that for simple spikes. Comparison of complex-spike responses at different times after the onset of control and learning target motions in the learning direction implied that complex spikes could guide learning during decreases but not increases in eye acceleration. Learning caused increases or decreases in the sensitivity of complex spikes to image motion in parallel with changes in eye acceleration. Complex-spike responses were similar in all PCs, including many in which learning did not modify simple-spike responses. Our data do not disprove current theories of cerebellar learning but suggest that these theories would have to be modified to account for simple- and complex-spike firing of floccular Purkinje cells reported here.


1981 ◽  
Vol 374 (1 Vestibular an) ◽  
pp. 312-329 ◽  
Author(s):  
H. Collewijn ◽  
A. J. Martins ◽  
R. M. Steinman

Perception ◽  
1996 ◽  
Vol 25 (7) ◽  
pp. 797-814 ◽  
Author(s):  
Michiteru Kitazaki ◽  
Shinsuke Shimojo

The generic-view principle (GVP) states that given a 2-D image the visual system interprets it as a generic view of a 3-D scene when possible. The GVP was applied to 3-D-motion perception to show how the visual system decomposes retinal image motion into three components of 3-D motion: stretch/shrinkage, rotation, and translation. First, the optical process of retinal image motion was analyzed, and predictions were made based on the GVP in the inverse-optical process. Then experiments were conducted in which the subject judged perception of stretch/shrinkage, rotation in depth, and translation in depth for a moving bar stimulus. Retinal-image parameters—2-D stretch/shrinkage, 2-D rotation, and 2-D translation—were manipulated categorically and exhaustively. The results were highly consistent with the predictions. The GVP seems to offer a broad and general framework for understanding the ambiguity-solving process in motion perception. Its relationship to other constraints such as that of rigidity is discussed.


Sign in / Sign up

Export Citation Format

Share Document