optical process
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 3)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Dasol Kim ◽  
Yeon Lee ◽  
Alexis Chacón ◽  
Dong-Eon Kim

High-order harmonic generation (HHG) is a fundamental process which can be simplified as the production of high energetic photons from a material subjected to a strong driving laser field. This highly nonlinear optical process contains rich information concerning the electron structure and dynamics of matter, for instance, gases, solids and liquids. Moreover, the HHG from solids has recently attracted the attention of both attosecond science and condensed matter physicists, since the HHG spectra can carry information of electron-hole dynamics in bands and inter- and intra-band current dynamics. In this paper, we study the effect of interlayer coupling and symmetry in two-dimensional (2D) material by analyzing high-order harmonic generation from monolayer and two differently stacked bilayer hexagonal boron nitrides (hBNs). These simulations reveal that high-order harmonic emission patterns strongly depend on crystal inversion symmetry (IS), rotation symmetry and interlayer coupling.


Author(s):  
Natalia Kiseleva ◽  
Mikhail A. Filatov ◽  
Jan Fischer ◽  
Milian Kaiser ◽  
Marius Jakoby ◽  
...  

The triplet-triplet annihilation upconversion (TTA-UC) is an important type of optical process with applications in biophotonics, solar energy harvesting and photochemistry. In most of TTA-UC systems, the formation of triplet...


2021 ◽  
Vol 3 (6) ◽  
pp. 36-46
Author(s):  
Donald C. Boone

This research will examine the computational methods to calculate the nonlinear optical process of second harmonic generation (SHG) that will be hypothesized to be present during lithium ion insertion into silicon nanowires. First it will be determined whether the medium in which SHG is conveyed is non-centrosymmetric or whether the medium is inversion symmetric where SHG as a part of the second-order nonlinear optical phenomenon does not exist. It will be demonstrated that the main interaction that determines SHG is multiphoton absorption on lithium ions. The quantum harmonic oscillator (QHO) is used as the background that generates coherent states for electrons and photons that transverse the length of the silicon nanowire. The matrix elements of the Hamiltonian which represents the energy of the system will be used to calculate the probability density of second-order nonlinear optical interactions which includes collectively SHG, sum-frequency generation (SFG) and difference-frequency generation (DFG). As a result, it will be seen that at varies concentrations of lithium ions (Li+) within the crystallized silicon (c-Si) matrix the second-order nonlinear optical process has probabilities substantial enough to create second harmonic generation that could possibly be used for such applications as second harmonic imaging microscopy.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gustavo H. dos Santos ◽  
Andre G. de Oliveira ◽  
Nara Rubiano da Silva ◽  
Gustavo Cañas ◽  
Esteban S. Gómez ◽  
...  

Abstract Stimulated parametric down-conversion is a nonlinear optical process that can be used for phase conjugation and frequency conversion of an optical field. A precise description of the outgoing stimulated field has been developed for the case where the input pump and seed fields are coherent. However, partially coherent beams can have interesting and important characteristics that are absent in coherent beams. One example is the twist phase, a novel optical phase that can appear in partially coherent Gaussian beams and gives rise to a nonzero orbital angular momentum. Here, we consider stimulated down-conversion for partially coherent input fields. As a case study, we use twisted Gaussian Schell-Model beams as the seed and pump beams in stimulated parametric down-conversion. It is shown both theoretically and experimentally that the stimulated idler beam can be written as a twisted Gaussian Schell-Model beam, where the beam parameters are determined entirely by the seed and pump. When the pump beam is coherent, the twist phase of the idler is the conjugate of that of the seed. These results could be useful for the correction of wavefront distortion such as in atmospheric turbulence in optical communication channels, and synthesis of partially coherent beams.


2021 ◽  
Vol 47 ◽  
pp. 102218
Author(s):  
Felix Gabriel Fischer ◽  
Niklas Birk ◽  
Leroy Rooney ◽  
Lucas Jauer ◽  
Johannes Henrich Schleifenbaum

Author(s):  
Donald Boone

This research will examine the computational methods to calculate the nonlinear optical process of second harmonic generation (SHG) that will be hypothesized to be present during lithium ion insertion into silicon nanowires. First it will be determined whether the medium in which SHG is conveyed is non-centrosymmetric or whether the medium is inversion symmetric where SHG as a part of the second-order nonlinear optical phenomenon does not exist. It will be demonstrated that the main interaction that determines SHG is multiphoton absorption on lithium ions. The quantum harmonic oscillator (QHO) is used as the background that generates coherent states for electrons and photons that transverse the length of the silicon nanowire. The matrix elements of the Hamiltonian which represents the energy of the system will be used to calculate the probability density of second-order nonlinear optical interactions which includes collectively SHG, sum-frequency generation (SFG) and difference-frequency generation (DFG). As a result it will be seen that at varies concentrations of lithium ions (Li+) within the crystallized silicon (c-Si) matrix the second-order nonlinear optical process has probabilities substantial enough to create second harmonic generation that could possibly be used for such applications as second harmonic imaging microscopy.


Author(s):  
Donald Boone

This research will examine the computational methods to calculate the nonlinear optical process of second harmonic generation (SHG) that will be hypothesized to be present during lithium ion insertion into silicon nanowires. First it will be determined whether the medium in which SHG is conveyed is non-centrosymmetric or whether the medium is inversion symmetric where SHG as a part of the second-order nonlinear optical phenomenon does not exist. It will be demonstrated that the main interaction that determines SHG is multiphoton absorption on lithium ions. The quantum harmonic oscillator (QHO) is used as the background that generates coherent states for electrons and photons that transverse the length of the silicon nanowire. The matrix elements of the Hamiltonian which represents the energy of the system will be used to calculate the probability density of second-order nonlinear optical interactions which includes collectively SHG, sum-frequency generation (SFG) and difference-frequency generation (DFG). As a result it will be seen that at varies concentrations of lithium ions (Li+) within the crystallized silicon (c-Si) matrix the second-order nonlinear optical process has probabilities substantial enough to create second harmonic generation that could possibly be used for such applications as second harmonic imaging microscopy.


2021 ◽  
Vol 11 (15) ◽  
pp. 6859
Author(s):  
Adnan Haj Yahya ◽  
Nezah Balal ◽  
Avi Klein ◽  
Jacob Gerasimov ◽  
Aharon Friedman

The electro-optical process is a popular method for terahertz radiation detection. Detectors based on the electro-optical process have large bandwidth, and the signal-to-noise ratio (SNR) is relatively high. Further, this detector can be applied to detect high-power signals without using radiation attenuation. This paper presents a method to improve the electro-optic process to THz radiation detection based on GaAs crystals by coupling the optical output signal into fiber. Results demonstrated an improvement in the signal-to-noise ratio that means an increase in the dynamic range of the electro-optical detector.


2021 ◽  
Author(s):  
Shayan Mookherjee

The main goal of this NSF-funded project [1201308 - Year 2] is to develop an integrated photonics device technology based on silicon photonics which can be used for compact and efficient nonlinear classical and quantum photonics applications. “Mixers” in the title reflects the use of nonlinear wave mixing, such as through four-wave mixing, which is the foundational optical process for wide-span wavelength conversion and entangled photon-pair generation in silicon photonics.


Sign in / Sign up

Export Citation Format

Share Document