Elevated potassium elicits recurrent surges of large GABAA-receptor-mediated post-synaptic currents in hippocampal CA3 pyramidal neurons

2011 ◽  
Vol 105 (3) ◽  
pp. 1185-1198 ◽  
Author(s):  
Damian Seung-Ho Shin ◽  
Wilson Yu ◽  
Alex Sutton ◽  
Megan Calos ◽  
Peter Louis Carlen

Previously, we found that rat hippocampal CA3 interneurons become hyperactive with increasing concentrations of extracellular K+ up to 10 mM. However, it is unclear how this enhanced interneuronal activity affects pyramidal neurons. Here we voltage-clamped rat hippocampal CA3 pyramidal neurons in vitro at 0 mV to isolate γ-aminobutyric acid (GABA)-activated inhibitory post-synaptic currents (IPSCs) and measured these in artificial cerebrospinal fluid (aCSF) and with 10 mM K+ bath perfusion. In aCSF, small IPSCs were present with amplitudes of 0.053 ± 0.007 nA and a frequency of 0.27 ± 0.14 Hz. With 10 mM K+ perfusion, IPSCs increased greatly in frequency and amplitude, culminating in surge events with peak amplitudes of 0.56 ± 0.08 nA, that appeared and disappeared cyclically with durations lasting 2.02 ± 0.37 min repeatedly, up to 10 times over a 30-min bath perfusion of elevated K+. These large IPSCs were GABAA-receptor mediated and did not involve significant desensitization of this receptor. Perfusion of a GABA transporter inhibitor (NO-711), glutamate receptor inhibitors CNQX and APV, or a gap junctional blocker (carbenoxolone) prevented the resurgence of large IPSCs. Pressure ejected sucrose resulted in the abolishment of subsequent surges. No elevated K+-mediated surges were observed in CA3 interneurons from the stratum oriens layer. In conclusion, these cyclic large IPSC events observable in CA3 pyramidal neurons in 10 mM KCl may be due to transient GABA depletion from continuously active interneuronal afferents.

2006 ◽  
Vol 96 (6) ◽  
pp. 3028-3041 ◽  
Author(s):  
David Fernández de Sevilla ◽  
Julieta Garduño ◽  
Emilio Galván ◽  
Washington Buño

Calcium-activated potassium conductances regulate neuronal excitability, but their role in epileptogenesis remains elusive. We investigated in rat CA3 pyramidal neurons the contribution of the Ca2+-activated K+-mediated afterhyperpolarizations (AHPs) in the genesis and regulation of epileptiform activity induced in vitro by 4-aminopyridine (4-AP) in Mg2+-free Ringer. Recurring spike bursts terminated by prolonged AHPs were generated. Burst synchronization between CA3 pyramidal neurons in paired recordings typified this interictal-like activity. A downregulation of the medium afterhyperpolarization (mAHP) paralleled the emergence of the interictal-like activity. When the mAHP was reduced or enhanced by apamin and EBIO bursts induced by 4-AP were increased or blocked, respectively. Inhibition of the slow afterhyperpolarization (sAHP) with carbachol, t-ACPD, or isoproterenol increased bursting frequency and disrupted burst regularity and synchronization between pyramidal neuron pairs. In contrast, enhancing the sAHP by intracellular dialysis with KMeSO4 reduced burst frequency. Block of GABAA–B inhibitions did not modify the abnormal activity. We describe novel cellular mechanisms where 1) the inhibition of the mAHP plays an essential role in the genesis and regulation of the bursting activity by reducing negative feedback, 2) the sAHP sets the interburst interval by decreasing excitability, and 3) bursting was synchronized by excitatory synaptic interactions that increased in advance and during bursts and decreased throughout the subsequent sAHP. These cellular mechanisms are active in the CA3 region, where epileptiform activity is initiated, and cooperatively regulate the timing of the synchronized rhythmic interictal-like network activity.


2001 ◽  
Vol 21 (11) ◽  
pp. 3807-3819 ◽  
Author(s):  
Mitsuhiro Yamada ◽  
Toshikazu Takeshita ◽  
Shigeto Miura ◽  
Kazuko Murata ◽  
Yutaka Kimura ◽  
...  

ABSTRACT STAM1, a member of the STAM (signal transducing adapter molecule) family, has a unique structure containing a Src homology 3 domain and ITAM (immunoreceptor tyrosine-based activation motif). STAM1 was previously shown to be associated with the Jak2 and Jak3 tyrosine kinases and to be involved in the regulation of intracellular signal transduction mediated by interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Here we generated mice lacking STAM1 by using homologous recombination with embryonic stem cells. STAM1−/− mice were morphologically indistinguishable from their littermates at birth. However, growth retardation in the third week after birth was observed for the STAM1−/− mice. Unexpectedly, despite the absence of STAM1, hematopoietic cells, including T- and B-lymphocyte and other hematopoietic cell populations, developed normally and responded well to several cytokines, including IL-2 and GM-CSF. However, histological analyses revealed the disappearance of hippocampal CA3 pyramidal neurons in STAM1−/− mice. Furthermore, we observed that primary hippocampal neurons derived from STAM1−/− mice are vulnerable to cell death induced by excitotoxic amino acids or an NO donor. These data suggest that STAM1 is dispensable for cytokine-mediated signaling in lymphocytes but may be involved in the survival of hippocampal CA3 pyramidal neurons.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Omar Babateen ◽  
Sergiy V. Korol ◽  
Zhe Jin ◽  
Amol K. Bhandage ◽  
Aikeremu Ahemaiti ◽  
...  

2010 ◽  
Vol 103 (6) ◽  
pp. 3070-3083 ◽  
Author(s):  
Rishikesh Narayanan ◽  
Sumantra Chattarji

Dendritic atrophy and impaired long-term synaptic potentiation (LTP) are hallmarks of chronic stress-induced plasticity in the hippocampus. It has been hypothesized that these disparate structural and physiological correlates of stress lead to hippocampal dysfunction by reducing postsynaptic dendritic surface, thereby adversely affecting the availability of synaptic inputs and suppressing LTP. Here we examine the validity of this framework using biophysical models of hippocampal CA3 pyramidal neurons. To statistically match with the experimentally observed region specificity of stress-induced atrophy, we use an algorithm to systematically prune three-dimensional reconstructions of CA3 pyramidal neurons. Using this algorithm, we build a biophysically realistic computational model to analyze the effects of stress on intrinsic and synaptic excitability. We find that stress-induced atrophy of CA3 dendrites leads to an increase in input resistance, which depends exponentially on the percentage of neuronal atrophy. This increase translates directly into higher spiking frequencies in response to both somatic current injections and synaptic inputs at various locations along the dendritic arbor. Remarkably, we also find that the dendritic regions that manifest atrophy-induced synaptic hyperexcitability are governed by the region specificity of the underlying dendritic atrophy. Coupled with experimentally observed modulation of N-methyl-d-aspartate receptor currents, such hyperexcitability could tilt the balance of plasticity mechanisms in favor of synaptic potentiation over depression. Thus paradoxically, our results suggest that stress may impair hippocampal learning and memory, not by directly inhibiting LTP, but because of stress-induced facilitation of intrinsic and synaptic excitability and the consequent imbalance in bidirectional synaptic plasticity.


2019 ◽  
Author(s):  
Nuno Apóstolo ◽  
Samuel N. Smukowski ◽  
Jeroen Vanderlinden ◽  
Giuseppe Condomitti ◽  
Vasily Rybakin ◽  
...  

SummarySynaptic diversity is a key feature of neural circuits. The structural and functional diversity of closely spaced inputs converging on the same neuron suggests that cell-surface interactions are essential in organizing input properties. Here, we analyzed the cell-surface protein (CSP) composition of hippocampal mossy fiber (MF) inputs on CA3 pyramidal neurons to identify regulators of MF-CA3 synapse properties. We uncover a rich cell-surface repertoire that includes adhesion proteins, guidance cue receptors, extracellular matrix (ECM) proteins, and uncharacterized CSPs. Interactome screening reveals multiple ligand-receptor modules and identifies ECM protein Tenascin-R (TenR) as a ligand of the uncharacterized neuronal receptor IgSF8. Presynaptic Igsf8 deletion impairs MF-CA3 synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition of CA3 neurons. Consequently, loss of IgSF8 increases CA3 neuron excitability. Our findings identify IgSF8 as a regulator of CA3 microcircuit development and suggest that combinations of CSP modules define input identity.


Diabetes ◽  
2014 ◽  
Vol 64 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Sergiy V. Korol ◽  
Zhe Jin ◽  
Omar Babateen ◽  
Bryndis Birnir

Sign in / Sign up

Export Citation Format

Share Document