multiple ligand
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 17)

H-INDEX

33
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0249616
Author(s):  
Shiran Lacham-Hartman ◽  
Yulia Shmidov ◽  
Evette S. Radisky ◽  
Ronit Bitton ◽  
David B. Lukatsky ◽  
...  

Although myriad protein–protein interactions in nature use polyvalent binding, in which multiple ligands on one entity bind to multiple receptors on another, to date an affinity advantage of polyvalent binding has been demonstrated experimentally only in cases where the target receptor molecules are clustered prior to complex formation. Here, we demonstrate cooperativity in binding affinity (i.e., avidity) for a protein complex in which an engineered dimer of the amyloid precursor protein inhibitor (APPI), possessing two fully functional inhibitory loops, interacts with mesotrypsin, a soluble monomeric protein that does not self-associate or cluster spontaneously. We found that each inhibitory loop of the purified APPI homodimer was over three-fold more potent than the corresponding loop in the monovalent APPI inhibitor. This observation is consistent with a suggested mechanism whereby the two APPI loops in the homodimer simultaneously and reversibly bind two corresponding mesotrypsin monomers to mediate mesotrypsin dimerization. We propose a simple model for such dimerization that quantitatively explains the observed cooperativity in binding affinity. Binding cooperativity in this system reveals that the valency of ligands may affect avidity in protein–protein interactions including those of targets that are not surface-anchored and do not self-associate spontaneously. In this scenario, avidity may be explained by the enhanced concentration of ligand binding sites in proximity to the monomeric target, which may favor rebinding of the multiple ligand binding sites with the receptor molecules upon dissociation of the protein complex.


Author(s):  
Alessandra Forni ◽  
Elena Cariati ◽  
Lucia Carlucci ◽  
Elena Lucenti ◽  
Daniele Marinotto ◽  
...  

A QTAIM and IQA investigation on model compounds of two isostructural AgI and CuI coordination polymers (CPs) based on cyclic triimidazole (L), i.e. the [MIL] n 1D double-stranded stair chain and the [MClL] n 3D network (M = Cu, Ag), has allowed light to be shed on the different emissive behaviour associated with the two metal ions. According to a previously reported investigation [Malpicci et al. (2021). Inorg. Chem. Front. 8, 1312–1323], AgI CPs showed both fluorescence and multiple ligand-centred room-temperature phosphorescences, whereas CuI CPs displayed non-thermally equilibrated halogen and metal-to-ligand charge transfer and two ligand-centred phosphorescences, the latter observed only by their selective activation. Analysis of both local and integral QTAIM descriptors, including delocalization indices and source function, of the Ag—N and Cu—N bonds reveals a higher covalent and local character for the latter, explaining the greater metal–ligand electronic communication observed for the Cu compounds. Moreover, IQA investigation shows that the Cu—N bond is characterized by higher interaction energy, due to both higher electrostatic and exchange-correlation contributions. Analysis on the M—X (M = Ag, Cu; X = I, Cl) bonds, also present in these structures, highlights a much higher covalent and local character with respect to the M—N bonds.


Nano Research ◽  
2021 ◽  
Author(s):  
Xin Li ◽  
Jinyue Du ◽  
Hui Duan ◽  
Haoyan Wang ◽  
Lin Fan ◽  
...  

2021 ◽  
Vol 5 (7) ◽  
pp. 1781-1790
Author(s):  
Dragana Nešić ◽  
Martin Bush ◽  
Aleksandar Spasic ◽  
Jihong Li ◽  
Tetsuji Kamata ◽  
...  

The murine monoclonal antibody (mAb) PT25-2 induces αIIbβ3 to bind ligand and initiate platelet aggregation. The underlying mechanism is unclear, because previous mutagenesis studies suggested that PT25-2 binds to the αIIb β propeller, a site distant from the Arg-Gly-Asp–binding pocket. To elucidate the mechanism, we studied the αIIbβ3–PT25-2 Fab complex by negative-stain and cryo-electron microscopy (EM). We found that PT25-2 binding results in αIIbβ3 partially exposing multiple ligand-induced binding site epitopes and adopting extended conformations without swing-out of the β3 hybrid domain. The cryo-EM structure showed PT25-2 binding to the αIIb residues identified by mutagenesis but also to 2 additional regions. Overlay of the cryo-EM structure with the bent αIIbβ3 crystal structure showed that binding of PT25-2 creates clashes with the αIIb calf-1/calf-2 domains, suggesting that PT25-2 selectively binds to partially or fully extended receptor conformations and prevents a return to its bent conformation. Kinetic studies of the binding of PT25-2 compared with mAbs 10E5 and 7E3 support this hypothesis. We conclude that PT25-2 induces αIIbβ3 ligand binding by binding to extended conformations and by preventing the interactions between the αIIb and β3 leg domains and subsequently the βI and β3 leg domains required for the bent-closed conformation.


2021 ◽  
Author(s):  
Samson A. Souza ◽  
Abby Held ◽  
Wenjie J. Lu ◽  
Brendan Drouhard ◽  
Bryant Avila ◽  
...  

Identification of multiple ligand binding sites in aromatase.


2021 ◽  
Vol 160 ◽  
pp. 106696
Author(s):  
Zhao Wei ◽  
Wei Sun ◽  
Haisheng Han ◽  
Guorong Liu ◽  
Junhao Fu ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Simon Vu ◽  
Vikrant Singh ◽  
Heike Wulff ◽  
Vladimir Yarov-Yarovoy ◽  
Jie Zheng

The capsaicin receptor TRPV1 is an outstanding representative of ligand-gated ion channels in ligand selectivity and sensitivity. However, molecular interactions that stabilize the ligand-binding pocket in its permissive conformation, and how many permissive conformations the ligand-binding pocket may adopt, remain unclear. To answer these questions, we designed a pair of novel capsaicin analogs to increase or decrease the ligand size by about 1.5 Å without altering ligand chemistry. Together with capsaicin, these ligands form a set of molecular rulers for investigating ligand-induced conformational changes. Computational modeling and functional tests revealed that structurally these ligands alternate between drastically different binding poses but stabilize the ligand-binding pocket in nearly identical permissive conformations; functionally, they all yielded a stable open state despite varying potencies. Our study suggests the existence of an optimal ligand-binding pocket conformation for capsaicin-mediated TRPV1 activation gating, and reveals multiple ligand-channel interactions that stabilize this permissive conformation.


Sign in / Sign up

Export Citation Format

Share Document