Cell adhesion proteins and the pathogenesis of autism spectrum disorders

2015 ◽  
Vol 113 (5) ◽  
pp. 1283-1286 ◽  
Author(s):  
Luke T. Stewart

Current theories on the pathogenesis of autism spectrum disorders (ASD) maintain that the associated cognitive and behavioral symptoms are caused by aberrant synaptic transmission affecting specific brain circuits. Transgenic mouse models have implicated the involvement of cell adhesion proteins in synaptic dysfunction and ASD pathogenesis. Recently, Aoto et al. ( Cell 154: 75–88, 2013) has shown that alternatively spliced neurexin proteins affect the efficacy of AMPA receptor-mediated excitatory currents in both cultured neuronal networks and acute hippocampal slices constituting a potential ASD-related electrophysiological phenotype.

Brain ◽  
2012 ◽  
Vol 135 (9) ◽  
pp. 2711-2725 ◽  
Author(s):  
Stephen J. Gotts ◽  
W. Kyle Simmons ◽  
Lydia A. Milbury ◽  
Gregory L. Wallace ◽  
Robert W. Cox ◽  
...  

2017 ◽  
Vol 96 (5) ◽  
pp. 789-802
Author(s):  
Kanako Ishizuka ◽  
Hidenori Tabata ◽  
Hidenori Ito ◽  
Itaru Kushima ◽  
Mariko Noda ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marianela Evelyn Traetta ◽  
Martín Gabriel Codagnone ◽  
Nonthué Alejandra Uccelli ◽  
Alberto Javier Ramos ◽  
Sandra Zárate ◽  
...  

Abstract Background Autism spectrum disorders (ASD) are synaptopathies characterized by area-specific synaptic alterations and neuroinflammation. Structural and adhesive features of hippocampal synapses have been described in the valproic acid (VPA) model. However, neuronal and microglial contribution to hippocampal synaptic pattern and its time-course of appearance is still unknown. Methods Male pups born from pregnant rats injected at embryonic day 10.5 with VPA (450 mg/kg, i.p.) or saline (control) were used. Maturation, exploratory activity and social interaction were assessed as autistic-like traits. Synaptic, cell adhesion and microglial markers were evaluated in the CA3 hippocampal region at postnatal day (PND) 3 and 35. Primary cultures of hippocampal neurons from control and VPA animals were used to study synaptic features and glutamate-induced structural remodeling. Basal and stimuli-mediated reactivity was assessed on microglia primary cultures isolated from control and VPA animals. Results At PND3, before VPA behavioral deficits were evident, synaptophysin immunoreactivity and the balance between the neuronal cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) were preserved in the hippocampus of VPA animals along with the absence of microgliosis. At PND35, concomitantly with the establishment of behavioral deficits, the hippocampus of VPA rats showed fewer excitatory synapses and increased NCAM/PSA-NCAM balance without microgliosis. Hippocampal neurons from VPA animals in culture exhibited a preserved synaptic puncta number at the beginning of the synaptogenic period in vitro but showed fewer excitatory synapses as well as increased NCAM/PSA-NCAM balance and resistance to glutamate-induced structural synaptic remodeling after active synaptogenesis. Microglial cells isolated from VPA animals and cultured in the absence of neurons showed similar basal and stimuli-induced reactivity to the control group. Results indicate that in the absence of glia, hippocampal neurons from VPA animals mirrored the in vivo synaptic pattern and suggest that while neurons are primed during the prenatal period, hippocampal microglia are not intrinsically altered. Conclusions Our study suggests microglial role is not determinant for developing neuronal alterations or counteracting neuronal outcome in the hippocampus and highlights the crucial role of hippocampal neurons and structural plasticity in the establishment of the synaptic alterations in the VPA rat model.


2010 ◽  
Vol 20 (2) ◽  
pp. 42-50 ◽  
Author(s):  
Laura W. Plexico ◽  
Julie E. Cleary ◽  
Ashlynn McAlpine ◽  
Allison M. Plumb

This descriptive study evaluates the speech disfluencies of 8 verbal children between 3 and 5 years of age with autism spectrum disorders (ASD). Speech samples were collected for each child during standardized interactions. Percentage and types of disfluencies observed during speech samples are discussed. Although they did not have a clinical diagnosis of stuttering, all of the young children with ASD in this study produced disfluencies. In addition to stuttering-like disfluencies and other typical disfluencies, the children with ASD also produced atypical disfluencies, which usually are not observed in children with typically developing speech or developmental stuttering. (Yairi & Ambrose, 2005).


Sign in / Sign up

Export Citation Format

Share Document