scholarly journals Temporal coding of taste in the parabrachial nucleus of the pons of the rat

2011 ◽  
Vol 105 (4) ◽  
pp. 1889-1896 ◽  
Author(s):  
Andrew M. Rosen ◽  
Jonathan D. Victor ◽  
Patricia M. Di Lorenzo

Recent studies have provided evidence that temporal coding contributes significantly to encoding taste stimuli at the first central relay for taste, the nucleus of the solitary tract (NTS). However, it is not known whether this coding mechanism is also used at the next synapse in the central taste pathway, the parabrachial nucleus of the pons (PbN). In the present study, electrophysiological responses to taste stimuli (sucrose, NaCl, HCl, and quinine) were recorded from 44 cells in the PbN of anesthetized rats. In 29 cells, the contribution of the temporal characteristics of the response to the discrimination of various taste qualities was assessed. A family of metrics that quantifies the similarity of two spike trains in terms of spike count and spike timing was used. Results showed that spike timing in 14 PbN cells (48%) conveyed a significant amount of information about taste quality, beyond what could be conveyed by spike count alone. In another 14 cells (48%), the rate envelope (time course) of the response contributed significantly more information than spike count alone. Across cells there was a significant correlation ( r = 0.51; P < 0.01) between breadth of tuning and the proportion of information conveyed by temporal dynamics. Comparison with previous data from the NTS (Di Lorenzo PM and Victor JD. J Neurophysiol 90: 1418–31, 2003 and J Neurophysiol 97: 1857–1861, 2007) showed that temporal coding in the NTS occurred in a similar proportion of cells and contributed a similar fraction of the total information at the same average level of temporal precision, even though trial-to-trial variability was higher in the PbN than in the NTS. These data suggest that information about taste quality conveyed by the temporal characteristics of evoked responses is transmitted with high fidelity from the NTS to the PbN.

2011 ◽  
Vol 105 (2) ◽  
pp. 697-711 ◽  
Author(s):  
Jen-Yung Chen ◽  
Jonathan D. Victor ◽  
Patricia M. Di Lorenzo

Sensory neurons are generally tuned to a subset of stimulus qualities within their sensory domain and manifest this tuning by the relative size of their responses to stimuli of equal intensity. However, response size alone cannot unambiguously signal stimulus quality, since response size also depends on stimulus intensity. Thus a common problem faced by sensory systems is that response size (e.g., spike count) confounds stimulus quality and intensity. Here, using the gustatory system as a model, we asked whether temporal firing characteristics could disambiguate these axes. To address this question, we recorded taste responses of single neurons in the nucleus of the solitary tract (NTS, the first central gustatory relay) in anesthetized rats to a range of concentrations of NaCl and HCl and their binary mixtures. To assess the contribution of the temporal characteristics of the response to discrimination among tastants, a family of metrics that quantifies the similarity of two spike trains in terms of spike count and spike timing was used. Results showed that the spike count produced by different taste qualities and different concentrations overlapped in most cells, implying that information conveyed by spike count is imprecise. Multidimensional scaling analysis of taste responses using similarity of temporal characteristics showed that different taste qualities, intensities, and mixtures formed distinct clusters in this “temporal coding” taste space and were arranged in a logical order. Thus the temporal structure of taste responses in single cells in the NTS can simultaneously convey information about both taste quality and intensity.


2015 ◽  
Vol 114 (4) ◽  
pp. 2204-2219 ◽  
Author(s):  
Clifford H. Keller ◽  
Terry T. Takahashi

Spike rate adaptation (SRA) is a continuing change of responsiveness to ongoing stimuli, which is ubiquitous across species and levels of sensory systems. Under SRA, auditory responses to constant stimuli change over time, relaxing toward a long-term rate often over multiple timescales. With more variable stimuli, SRA causes the dependence of spike rate on sound pressure level to shift toward the mean level of recent stimulus history. A model based on subtractive adaptation (Benda J, Hennig RM. J Comput Neurosci 24: 113–136, 2008) shows that changes in spike rate and level dependence are mechanistically linked. Space-specific neurons in the barn owl's midbrain, when recorded under ketamine-diazepam anesthesia, showed these classical characteristics of SRA, while at the same time exhibiting changes in spike timing precision. Abrupt level increases of sinusoidally amplitude-modulated (SAM) noise initially led to spiking at higher rates with lower temporal precision. Spike rate and precision relaxed toward their long-term values with a time course similar to SRA, results that were also replicated by the subtractive model. Stimuli whose amplitude modulations (AMs) were not synchronous across carrier frequency evoked spikes in response to stimulus envelopes of a particular shape, characterized by the spectrotemporal receptive field (STRF). Again, abrupt stimulus level changes initially disrupted the temporal precision of spiking, which then relaxed along with SRA. We suggest that shifts in latency associated with stimulus level changes may differ between carrier frequency bands and underlie decreased spike precision. Thus SRA is manifest not simply as a change in spike rate but also as a change in the temporal precision of spiking.


2013 ◽  
Vol 109 (3) ◽  
pp. 851-866 ◽  
Author(s):  
Xin Huang ◽  
Stephen G. Lisberger

We recorded simultaneously from pairs of motion-sensitive neurons in the middle temporal cortex (MT) of macaque monkeys and used cross-correlations in the timing of spikes between neurons to gain insights into cortical circuitry. We characterized the time course and stimulus dependency of the cross-correlogram (CCG) for each pair of neurons and of the auto-correlogram (ACG) of the individual neurons. For some neuron pairs, the CCG showed negative flanks that emerged next to the central peak during stimulus-driven responses. Similar negative flanks appeared in the ACG of many neurons. Negative flanks were most prevalent and deepest when the neurons were driven to high rates by visual stimuli that moved in the neurons' preferred directions. The temporal development of the negative flanks in the CCG coincided with a parallel, modest reduction of the noise correlation between the spike counts of the neurons. Computational analysis of a model cortical circuit suggested that negative flanks in the CCG arise from the excitation-triggered mutual cross-inhibition between pairs of excitatory neurons. Intracortical recurrent inhibition and afterhyperpolarization caused by intrinsic outward currents, such as the calcium-activated potassium current of small conductance, can both contribute to the negative flanks in the ACG. In the model circuit, stronger intracortical inhibition helped to maintain the temporal precision between the spike trains of pairs of neurons and led to weaker noise correlations. Our results suggest a neural circuit architecture that can leverage activity-dependent intracortical inhibition to adaptively modulate both the synchrony of spike timing and the correlations in response variability.


1996 ◽  
Vol 76 (2) ◽  
pp. 1310-1326 ◽  
Author(s):  
J. D. Victor ◽  
K. P. Purpura

1. We recorded single-unit and multi-unit activity in response to transient presentation of texture and grating patterns at 25 sites within the parafoveal representation of V1, V2, and V3 of two awake monkeys trained to perform a fixation task. In grating experiments, stimuli varied in orientation, spatial frequency, or both. In texture experiments, stimuli varied in contrast, check size, texture type, or pairs of these attributes. 2. To examine the nature and precision of temporal coding, we compared individual responses elicited by each set of stimuli in terms of two families of metrics. One family of metrics, D(spike), was sensitive to the absolute spike time (following stimulus onset). The second family of metrics, D(interval), was sensitive to the pattern of interspike intervals. In each family, the metrics depend on a parameter q, which expresses the precision of temporal coding. For q = 0, both metrics collapse into the "spike count" metric D(Count), which is sensitive to the number of impulses but insensitive to their position in time. 3. Each of these metrics, with values of q ranging from 0 to 512/s, was used to calculate the distance between all pairs of spike trains within each dataset. The extent of stimulus-specific clustering manifest in these pairwise distances was quantified by an information measure. Chance clustering was estimated by applying the same procedure to synthetic data sets in which responses were assigned randomly to the input stimuli. 4. Of the 352 data sets, 170 showed evidence of tuning via the spike count (q = 0) metric, 294 showed evidence of tuning via the spike time metric, 272 showed evidence of tuning via the spike interval metric to the stimulus attribute (contrast, check size, orientation, spatial frequency, or texture type) under study. Across the entire dataset, the information not attributable to chance clustering averaged 0.042 bits for the spike count metric, 0.171 bits for the optimal spike time metric, and 0.107 bits for the optimal spike interval metric. 5. The reciprocal of the optimal cost q serves as a measure of the temporal precision of temporal coding. In V1 and V2, with both metrics, temporal precision was highest for contrast (ca. 10-30 ms) and lowest for texture type (ca. 100 ms). This systematic dependence of q on stimulus attribute provides a possible mechanism for the simultaneous representation of multiple stimulus attributes in one spike train. 6. Our findings are inconsistent with Poisson models of spike trains. Synthetic data sets in which firing rate was governed by a time-dependent Poisson process matched to the observed poststimulus time histogram (PSTH) overestimated clustering induced by D(count) and, for low values of q, D(spike)[q] and D(intervals)[q]. Synthetic data sets constructed from a modified Poisson process, which preserved not only the PSTH but also spike count statistics accounted for the clustering induced by D(count) but underestimated the clustering induced by D(spike)[q] and D(interval)[q].


2014 ◽  
Vol 111 (8) ◽  
pp. 1655-1670 ◽  
Author(s):  
Michael S. Weiss ◽  
Jonathan D. Victor ◽  
Patricia M. Di Lorenzo

In the rodent, the parabrachial nucleus of the pons (PbN) receives information about taste directly from the nucleus of the solitary tract (NTS). Here we examined how information about taste quality (sweet, sour, salty, and bitter) is conveyed in the PbN of awake, freely licking rats, with a focus on how this information is transformed from the incoming NTS signals. Awake rats with electrodes in the PbN had free access to a lick spout that delivered taste stimuli (5 consecutive licks; 100 mM NaCl, 10 mM citric acid, 0.01 mM quinine HCl, or 100 mM sucrose and water) or water (as a rinse) on a variable-ratio schedule. To assess temporal coding, a family of metrics that quantifies the similarity of two spike trains in terms of spike count and spike timing was used. PbN neurons ( n = 49) were generally broadly tuned across taste qualities with variable response latencies. Some PbN neurons were quiescent during lick bouts, and others, some taste responsive, showed time-locked firing to the lick pattern. Compared with NTS neurons, spike timing played a larger role in signaling taste in the first 2 s of the response, contributing significantly in 78% (38/49) of PbN cells compared with 45% of NTS cells. Also, information from temporal coding increased at a faster rate as the response unfolded over time in PbN compared with NTS. Collectively, these data suggest that taste-related information from NTS converges in the PbN to enable a subset of PbN cells to carry a larger information load.


2007 ◽  
Vol 97 (2) ◽  
pp. 1857-1861 ◽  
Author(s):  
Patricia M. Di Lorenzo ◽  
Jonathan D. Victor

When a taste stimulus enters the mouth, intentional movement of the stimulus within the oropharyngeal cavity affects the rate at which taste receptors are exposed to the stimulus and may ultimately affect taste perception. Early studies have shown that stimulus flow rate, the experimental equivalent of the effects of these investigative movements, modulates the portion of the peripheral nerve response that occurs when behavioral assessments of tastants are made. The present experiment studied the neural coding mechanisms for flow rate in the nucleus of the solitary tract (NTS), the first central relay in the taste pathway. Responses to NaCl (0.1 M) presented at high (5 ml/s) and low (3 ml/s) flow rates, sucrose (0.5 M), quinine HCl (0.01 M), and HCl (0.01 M) were recorded extracellularly from single NTS units in multiple replications. Information conveyed by evoked responses was analyzed with a family of metrics that quantify the similarity of two spike trains in terms of spike count and spike timing. Information about flow rate was conveyed by spike timing and spike count in approximately equal proportions of units (each ∼1/3), whereas information about taste quality was conveyed by spike timing in about half of the units. Different subsets of units contributed information for discrimination of flow rate and taste quality.


2008 ◽  
Vol 99 (2) ◽  
pp. 644-655 ◽  
Author(s):  
Andre T. Roussin ◽  
Jonathan D. Victor ◽  
Jen-Yung Chen ◽  
Patricia M. Di Lorenzo

In the nucleus of the solitary tract (NTS), electrophysiological responses to taste stimuli representing four basic taste qualities (sweet, sour, salty, or bitter) can often be discriminated by spike count, although in units for which the number of spikes is variable across identical stimulus presentations, spike timing (i.e., temporal coding) can also support reliable discrimination. The present study examined the contribution of spike count and spike timing to the discrimination of stimuli that evoke the same taste quality but are of different chemical composition. Responses to between 3 and 21 repeated presentations of two pairs of quality-matched tastants were recorded from 38 single cells in the NTS of urethane-anesthetized rats. Temporal coding was assessed in 24 cells, most of which were tested with salty and sour tastants, using an information-theoretic approach. Within a given cell, responses to tastants of similar quality were generally closer in magnitude than responses to dissimilar tastants; however, tastants of similar quality often reversed their order of effectiveness across replicate sets of trials. Typically, discrimination between tastants of dissimilar qualities could be made by spike count. Responses to tastants of similar quality typically evoked more similar response magnitudes but were more frequently, and to a proportionally greater degree, distinguishable based on temporal information. Results showed that nearly every taste-responsive NTS cell has the capacity to generate temporal features in evoked spike trains that can be used to distinguish between stimuli of different qualities and chemical compositions.


2005 ◽  
Vol 93 (6) ◽  
pp. 3248-3256 ◽  
Author(s):  
Veronika Zsiros ◽  
Shaul Hestrin

The temporal precision of converting excitatory postsynaptic potentials (EPSPs) into spikes at pyramidal cells is critical for the coding of information in the cortex. Several in vitro studies have shown that voltage-dependent conductances in pyramidal cells can prolong the EPSP time course resulting in an imprecise EPSP-spike coupling. We have used dynamic-clamp techniques to mimic the in vivo background synaptic conductance in cortical slices and investigated how the ongoing synaptic activity may affect the EPSP time course near threshold and the EPSP spike coupling. We report here that background synaptic conductance dramatically diminished the depolarization related prolongation of the EPSPs in pyramidal cells and improved the precision of spike timing. Furthermore, we found that background synaptic conductance can affect the interaction among action potentials in a spike train. Thus the level of ongoing synaptic activity in the cortex may regulate the capacity of pyramidal cells to process temporal information.


2008 ◽  
Vol 20 (4) ◽  
pp. 974-993 ◽  
Author(s):  
Arunava Banerjee ◽  
Peggy Seriès ◽  
Alexandre Pouget

Several recent models have proposed the use of precise timing of spikes for cortical computation. Such models rely on growing experimental evidence that neurons in the thalamus as well as many primary sensory cortical areas respond to stimuli with remarkable temporal precision. Models of computation based on spike timing, where the output of the network is a function not only of the input but also of an independently initializable internal state of the network, must, however, satisfy a critical constraint: the dynamics of the network should not be sensitive to initial conditions. We have previously developed an abstract dynamical system for networks of spiking neurons that has allowed us to identify the criterion for the stationary dynamics of a network to be sensitive to initial conditions. Guided by this criterion, we analyzed the dynamics of several recurrent cortical architectures, including one from the orientation selectivity literature. Based on the results, we conclude that under conditions of sustained, Poisson-like, weakly correlated, low to moderate levels of internal activity as found in the cortex, it is unlikely that recurrent cortical networks can robustly generate precise spike trajectories, that is, spatiotemporal patterns of spikes precise to the millisecond timescale.


2002 ◽  
Vol 87 (4) ◽  
pp. 1749-1762 ◽  
Author(s):  
Shigeto Furukawa ◽  
John C. Middlebrooks

Previous studies have demonstrated that the spike patterns of cortical neurons vary systematically as a function of sound-source location such that the response of a single neuron can signal the location of a sound source throughout 360° of azimuth. The present study examined specific features of spike patterns that might transmit information related to sound-source location. Analysis was based on responses of well-isolated single units recorded from cortical area A2 in α-chloralose-anesthetized cats. Stimuli were 80-ms noise bursts presented from loudspeakers in the horizontal plane; source azimuths ranged through 360° in 20° steps. Spike patterns were averaged across samples of eight trials. A competitive artificial neural network (ANN) identified sound-source locations by recognizing spike patterns; the ANN was trained using the learning vector quantization learning rule. The information about stimulus location that was transmitted by spike patterns was computed from joint stimulus-response probability matrices. Spike patterns were manipulated in various ways to isolate particular features. Full-spike patterns, which contained all spike-count information and spike timing with 100-μs precision, transmitted the most stimulus-related information. Transmitted information was sensitive to disruption of spike timing on a scale of more than ∼4 ms and was reduced by an average of ∼35% when spike-timing information was obliterated entirely. In a condition in which all but the first spike in each pattern were eliminated, transmitted information decreased by an average of only ∼11%. In many cases, that condition showed essentially no loss of transmitted information. Three unidimensional features were extracted from spike patterns. Of those features, spike latency transmitted ∼60% more information than that transmitted either by spike count or by a measure of latency dispersion. Information transmission by spike patterns recorded on single trials was substantially reduced compared with the information transmitted by averages of eight trials. In a comparison of averaged and nonaveraged responses, however, the information transmitted by latencies was reduced by only ∼29%, whereas information transmitted by spike counts was reduced by 79%. Spike counts clearly are sensitive to sound-source location and could transmit information about sound-source locations. Nevertheless, the present results demonstrate that the timing of the first poststimulus spike carries a substantial amount, probably the majority, of the location-related information present in spike patterns. The results indicate that any complete model of the cortical representation of auditory space must incorporate the temporal characteristics of neuronal response patterns.


Sign in / Sign up

Export Citation Format

Share Document