Local Circuit Properties Underlying Cortical Reorganization

2002 ◽  
Vol 88 (3) ◽  
pp. 1288-1301 ◽  
Author(s):  
Peter W. Hickmott ◽  
Michael M. Merzenich

Peripheral denervation has been shown to cause reorganization of the deafferented somatotopic region in primary somatosensory cortex (S1). However, the basic mechanisms that underlie reorganization are not well understood. In the experiments described in this paper, a novel in vivo/in vitro preparation of adult rat S1 was used to determine changes in local circuit properties associated with the denervation-induced plasticity of the cortical representation in rat S1. In the present studies, deafferentation of rat S1 was induced by cutting the radial and median nerves in the forelimb of adult rats, resulting in a rapid shift of the location of the forepaw/lower jaw border; the amount of the shift increased over the times assayed, through 28 days after denervation. The locations of both borders (i.e., original and reorganized) were marked with vital dyes, and slices from the marked region were used for whole-cell recording. Responses were evoked using electrical stimulation of supragranular S1 and recorded in supragranular neurons close to either the original or reorganized border. For each neuron, postsynaptic potentials (PSPs) were evoked by stimulation of fibers that crossed the border site (CB stim) and by equivalent stimulation that did not cross (NCB stim). Monosynaptic inhibitory postsynaptic potentials (IPSPs) were also examined after blocking excitatory transmission with 15 μM CNQX plus 100 μMdl-APV. The amplitudes of PSPs and IPSPs were compared between CB and NCB stimulation to quantify effects of the border sites on excitation and inhibition. Previous results using this preparation in the normal (i.e., without induced plasticity) rat S1 demonstrated that at a normal border both PSPs and IPSPs were smaller when evoked with CB stimulation than with NCB stimulation. For most durations of denervation, a similar bias (i.e., smaller responses with CB stimulation) for PSPs and IPSPs was observed at the site of the novel reorganized border, while no such bias was observed at the suppressed original border site. Thus changes in local circuit properties (excitation and inhibition) can reflect larger-scale changes in cortical organization. However, specific dissociations between these local circuit properties and the presence of the novel border at certain durations of denervation were also observed, suggesting that there are several intracortical processes contributing to cortical reorganization over time and that excitation and inhibition may contribute differentially to them.

1985 ◽  
Vol 105 (1) ◽  
pp. 1-6 ◽  
Author(s):  
C. L. Au ◽  
D. M. Robertson ◽  
D. M. de Kretser

ABSTRACT The hormonal control of inhibin production by adult rat testes was investigated using an in-vitro inhibin bioassay validated for the measurement of inhibin activity in charcoal-treated rat testicular extracts. The effect of hypophysectomy examined at 16 h, 3, 7 and 42 days after surgery showed a decrease in testicular inhibin content and seminiferous tubule fluid production by 7 days and a decrease in inhibin production by 42 days. Serum FSH and LH were suppressed 3 days after surgery. In 30-day chronically hypophysectomized adult rats treated for 3 days with twice daily s.c. injections of (a) human FSH (hFSH, 22 i.u./rat per day), (b) testosterone (5 mg/rat per day), (c) hFSH + testosterone (same doses as a and b), or (d) human chorionic gonadotrophin (hCG, 12 i.u./rat per day), hFSH or hFSH and testosterone stimulated an increase in testicular inhibin content but not in inhibin production or tubule fluid production. Testosterone and hCG had no effect on these parameters. It is concluded that in vivo, FSH alone stimulates an increase in testicular inhibin content. The failure to observe an increase in inhibin production in vivo is attributed to the suppression of seminiferous tubule fluid production under the same experimental conditions. J. Endocr. (1985) 105, 1–6


1976 ◽  
Vol 82 (3) ◽  
pp. 587-599 ◽  
Author(s):  
J. Ramachandran ◽  
Y. C. Kong ◽  
Susanna Liles

ABSTRACT Both ACTH and NPS-ACTH in which the single tryptophan residue of the hormone is modified were able to stimulate adrenal corticosterone concentration to the same extent in hypophysectomized rats, although a higher dose of NPS-ACTH was required. ACTH stimulated adrenal cyclic AMP levels 120-fold in hypophysectomized rats whereas NPS-ACTH caused a marginal increase. In the case of ACTH, low doses of the hormone capable of producing maximal stimulation of corticosterone synthesis did not produce any detectable change in cyclic AMP concentration. The rates of secretion of corticosterone induced by ACTH and NPS-ACTH in vivo were the same. NPS-ACTH was found to be 1.2% as potent as ACTH. The role of cyclic AMP in adrenal repair was investigated by administering equipotent doses of ACTH or NPS-ACTH to hypophysectomized rats. In adult rats both failed to produce a significant increase in adrenal weight. Adrenal function (measured by responsiveness to exogenous ACTH in vitro) was restored by NPS-ACTH but not to the same degree as ACTH. In hypophysectomized weanling rats, ACTH produced a small but significant increase in adrenal weight but NPS-ACTH did not. These results suggest that an increase in adrenal cyclic AMP may not be obligatory for the stimulation of steroidogenesis by ACTH and that some of the trophic actions of the hormone may be mediated by cyclic AMP.


1981 ◽  
Vol 241 (3) ◽  
pp. E221-E225 ◽  
Author(s):  
K. Taya ◽  
G. S. Greenwald

Thirty-day-old rats given a single subcutaneous injection of 5 IU pregnant mare serum gonadotropin (PMS) at 0900 h ovulated on the morning of day 33 (= estrus). However, the second ovulation did not occur until 9.4 days later. To determine the mechanism responsible for the delay in the second ovulation, in vivo and in vitro determinations of steroid and peptide hormones were compared between PMS-primed immature rats and adult cyclic rats. In PMS-primed rats, the corpora lutea (CL) produced progesterone for 2 days longer (until day 36) than the CL of the adult rat. Serum levels of 20 alpha-dihydroprogesterone, testosterone, and estradiol in PMS-primed rats were significantly lower than the corresponding values in adult rats. Serum LH was consistently lower in the PMS-primed rats. An increase in serum FSH occurred on days 36–37, which may be responsible for maturation of the follicles destined to ovulate at the second ovulation. On day 37, the nonluteal ovary of the PMS-primed rats also began to produce in vitro appreciable amounts of testosterone and estradiol. These findings suggest that the greater levels of prolactin and/or low levels of luteinizing hormone during estrus in PMS-primed rats may be responsible for the prolonged secretion of progesterone by the CL. This in turn inhibits follicular maturation, indirectly by lowering serum LH, which is reflected in reduced ability of the follicles in vitro to produce testosterone and estradiol until the CL regress.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Yingfei Xue ◽  
Alexander Kossar ◽  
Gaetano THIENE ◽  
Robert LEVY ◽  
Giovanni Ferrari

Objective: Bioprosthetic heart valves (BHV) are subject to accelerated structural valve degeneration (SVD) in pediatric patients. Prior literature has reported differences in circulating markers of mineralization in pediatric patients compared to adults. Here we test the hypothesis that calcification-related circulating markers are differentially expressed in juvenile vs adult animals, and these markers functionally drive the accelerated SVD in juvenile animals in vitro and in vivo . Methods: Serum calcium (Ca 2+ ), phosphate (PO 4 - ), alkaline phosphatase (ALP), and osteopontin (OPN) levels of juvenile (3 week-old; n=5) and adult (8 month-old; n=5) Sprague-Dawley rats were measured by commercially-available assay kits. Glutaraldehyde-fixed bovine pericardial discs (BP) were incubated in juvenile or adult rat serum in vitro for 4 or 8 weeks. BP were subcutaneously implanted in juvenile or adult rats for 7 or 30 days (4-6 discs/rat). Pericardial transcatheter valves were implanted in juvenile Dorset sheep for 150 days (n=3). Alizarin Red staining, Von Kossa staining, and a quantitative assay were used for calcium analyses. Second harmonic generation imaging visualized collagen structure. Results: Serum Ca 2+ (p<0.05), PO 4 - (p<0.05), ALP (p<0.01), and OPN (p<0.01) were all increased in juvenile rats compared to adult rats. BP incubated in juvenile rat serum resulted in higher calcium deposition (p<0.05) and more disruption to collagen structure as evidenced by reduced alignment coefficient (p<0.01) as compared to those incubated in adult rat serum. Similarly, BP explanted from juvenile rats had higher calcium deposition (p<0.01) and more disrupted collagen structure in terms of collagen alignment and crimp period (p<0.01). Results in progress in juvenile sheep implantation model further confirmed the in vitro and in vivo findings that BHV explants had substantial calcium deposition and collagen disalignment. Conclusion: Calcium accumulates within BHV biomaterials more prominently in juvenile rats; increased serum markers of mineralization may explain the increased susceptibility to SVD in pediatric patients. Future studies will investigate novel strategies for the prevention and mitigation of accelerated SVD in pediatric patients.


2006 ◽  
Vol 401 (2) ◽  
pp. 465-473 ◽  
Author(s):  
Guy Martin ◽  
Bernard Ferrier ◽  
Agnès Conjard ◽  
Mireille Martin ◽  
Rémi Nazaret ◽  
...  

Recent reports have indicated that 48–72 h of fasting, Type 1 diabetes and high-protein feeding induce gluconeogenesis in the small intestine of adult rats in vivo. Since this would (i) represent a dramatic revision of the prevailing view that only the liver and the kidneys are gluconeogenic and (ii) have major consequences in the metabolism, nutrition and diabetes fields, we have thoroughly re-examined this question in the situation reported to induce the highest rate of gluconeogenesis. For this, metabolically viable small intestinal segments from 72 h-fasted adult rats were incubated with [3-13C]glutamine as substrate. After incubation, substrate utilization and product accumulation were measured by enzymatic and NMR spectroscopic methods. Although the segments utilized [13C]glutamine at high rates and accumulated 13C-labelled products linearly for 30 min in vitro, no substantial glucose synthesis could be detected. This was not due to the re-utilization of [13C]glucose initially synthesized from [13C]glutamine. Arteriovenous metabolite concentration difference measurements across the portal vein-drained viscera of 72 h-fasted Wistar and Sprague–Dawley rats clearly indicated that glutamine, the main if not the only gluconeogenic precursor taken up, could not give rise to detectable glucose production in vivo. Therefore we challenge the view that the small intestine of the adult rat is a gluconeogenic organ.


1987 ◽  
Vol 113 (1) ◽  
pp. 89-96 ◽  
Author(s):  
R. M. Sharpe ◽  
I. Cooper

ABSTRACT Four hormones have been identified by various authors as possible paracrine regulators of testicular Leydig cells. The aim of this study was to evaluate their effects on purified adult rat Leydig cells under various conditions in vitro, and then to assess whether comparable effects occurred in vivo. In agreement with previous findings, an LHRH agonist (LHRH-A) exerted clear-cut effects on testosterone secretion by Leydig cells both in vitro and in vivo. On its own, LHRH-A stimulated testosterone production by Leydig cells for up to 24 h in culture but inhibited testosterone production stimulated by human chorionic gonadotrophin (hCG) between 24 and 72 h of culture. In-vivo, unilateral intratesticular injection of adult rats with 1 ng LHRH-A resulted 5 h later in a significant increase in testosterone concentrations in testicular interstitial fluid (IF). Vasopressin exerted effects in vitro which were similar to those of LHRH-A. On its own, vasopressin stimulated testosterone production for up to 5 h of culture, but not thereafter, while in the presence of hCG, vasopressin inhibited testosterone production beyond 24 h of culture. The initial stimulatory effect of vasopressin on testosterone production occurred with concentrations of 1 nmol/l and higher, but the magnitude of stimulation (threefold or less) was considerably less than that induced by LHRH-A (ninefold) over the same time period. In contrast to LHRH-A, unilateral intratesticular injection of vasopressin in high doses (20 and 2 ng) had no effect on IF testosterone levels 5 h later. When Leydig cells were cultured in the presence of testicular IF, to approximate in-vivo conditions, there was marked stimulation of testosterone production, but the effects of vasopressin and LHRH-A in the presence of IF were comparable to those observed in its absence. Neither morphine nor oxytocin at concentrations of 0·1 μmol/l had any effect on testosterone production under any of the conditions of culture, and unilateral intratesticular injection of oxytocin, morphine or naloxone was without effect on the IF levels of testosterone. It is concluded that opiates and oxytocin are probably not involved in the paracrine regulation of Leydig cells, whereas vasopressin may play such a role. However, as the stimulatory effects of vasopressin were small in relation to those of LHRH-A and were not evident in vivo, the physiological significance of the effects of vasopressin are uncertain. J. Endocr. (1987) 113, 89–96


1995 ◽  
Vol 146 (2) ◽  
pp. 215-225 ◽  
Author(s):  
C J Xian ◽  
C A Shoubridge ◽  
L C Read

Abstract To investigate the potential of IGF-I peptides as therapeutics in the gut, the survival profiles of a bolus of 125I-labelled IGF-I (8·6 ng) in vivo in various ligated gut segments of fasted adult rats have been examined. The intactness of IGF-I tracer in the flushed luminal contents was estimated by trichloroacetic acid precipitation, antibody and receptor binding assays. It was found that IGF-I was degraded very rapidly in duodenum and ileum segments with a half-life (t1/2) of 2 min by all three methods. IGF-I was slightly more stable in the stomach (t1/2=8, 5 and 2·5 min by the above three methods), and considerably more stable in the colon (t1/2=38, 33 and 16 min as judged by the three methods). Rates of degradation in gut flushings in vitro were similar to the in vivo rates except for the colon, where IGF-I was proteolysed more rapidly in vivo. As a means of developing gut-stable and active forms of IGF-I, several approaches were examined for their effectiveness in prolonging IGF-I survival in the upper gut. It was found that the extension peptide on the analogue, LR3IGF-I did not protect IGF-I, nor did association with IGF-binding protein-3. However, an IGF-I antiserum was effective in prolonging IGF-I half-life in duodenum fluid by 28-fold. Charge interaction between IGF-I and heparin could also protect IGF-I in the stomach but not in duodenum flushings. Furthermore, casein (a non-specific dietary protein) and to a lesser extent, BSA and lactoferrin, were effective in preserving IGF-I structural integrity and receptor binding activity in both stomach and duodenum fluids. It can be concluded that IGF-I cannot be expected to retain bioactivity if delivered orally because of rapid proteolysis in the upper gut, but the use of IGF antibodies and casein could represent useful approaches for IGF-I protection in oral formulae. Journal of Endocrinology (1995) 146, 215–225


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Sally A. Marik ◽  
Peter W. Hickmott

Horizontal connections in superficial cortical layers integrate information across sensory maps by connecting related functional columns. It has been hypothesized that these connections mediate cortical reorganization via synaptic plasticity. However, it is not known if the horizontal connections from discontinuous cortical regions can undergo plasticity in the adult. Here we located the border between two discontinuous cortical representations in vivo and used either pairing or low-frequency stimulation to induce synaptic plasticity in the horizontal connections surrounding this border in vitro. Individual neurons revealed significant and diverse forms of synaptic plasticity for horizontal connections within a continuous representation and discontinuous representations. Interestingly, both enhancement and depression were observed following both plasticity paradigms. Furthermore, plasticity was not restricted by the border's presence. Depolarization in the absence of synaptic stimulation also produced synaptic plasticity, but with different characteristics. These experiments suggest that plasticity of horizontal connections may mediate functional reorganization.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olanrewaju Ayodeji Durojaye ◽  
Nkwachukwu Oziamara Okoro ◽  
Arome Solomon Odiba

Abstract Background The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral structure. Results In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets. Conclusions The protein data obtained from this study provides robust information for further in vitro and in vivo experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-like corona viruses.


1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


Sign in / Sign up

Export Citation Format

Share Document