Synchronization of Motor Units in Human Soleus Muscle During Standing Postural Tasks

2005 ◽  
Vol 94 (1) ◽  
pp. 62-69 ◽  
Author(s):  
G. Mochizuki ◽  
T. D. Ivanova ◽  
S. J. Garland

During standing posture, the soleus muscles acts to control sway in the anteroposterior (AP) direction. The soleus muscles bilaterally share a common function during standing tasks. We sought to determine whether common descending inputs, as evidenced by the synchronization of bilateral motor unit pairs, were employed as a strategy to control this common function. Single motor units were recorded from the soleus muscles in subjects who stood on adjacent force platforms for 5 min with their eyes open or closed. While standing with the eyes open, only 4/39 bilateral motor unit pairs showed significant synchronization. Similarly, only 3/36 motor unit pairs were significantly synchronized during the eyes closed task. The low incidence of synchronization was observed despite a high correlation in the amount of sway in the AP direction between legs in both the eyes open and eyes closed tasks (ρ = 0.80 and ρ = 0.83, respectively). When the extent of synchronization was assessed between pairs of motor units within the same leg with the eyes open, 10/12 pairs were synchronized. Furthermore, when pairs of soleus motor units were recorded both bilaterally and unilaterally during voluntary isometric ankle plantarflexion, only 4/30 bilateral pairs showed significant synchronization, whereas 19/24 unilateral pairs had significant synchronization. In this study, there was little evidence of the existence of synchronization between bilateral soleus motor unit pairs in either postural tasks or voluntary isometric contractions. In cases in which bilateral synchronization was observed, it was considerably weaker than the synchronization of motor units within a single soleus muscle. The results of this study reveal that it is rather uncommon for bilateral soleus motoneurons to receive common descending synaptic inputs, whereas two motoneurons within a single soleus muscle do.

2007 ◽  
Vol 97 (6) ◽  
pp. 3917-3925 ◽  
Author(s):  
G. Mochizuki ◽  
T. D. Ivanova ◽  
S. J. Garland

The purpose of this study was to determine the factors that influence the co-modulation of motor unit discharge rate in soleus muscles of both legs during upright standing. Single motor units were recorded from the left and right soleus muscles under three experimental conditions: standing quietly with the eyes open and closed, standing with the eyes closed while vibration was applied to one Achilles tendon, and swaying voluntarily or producing variable low-force isometric contractions at a frequency of 0.05 Hz. Correlations in motor unit discharge rate between left and right soleus motor units were assessed using common drive analysis. The results showed that common drive to motoneurons of the two muscles did not differ between standing with the eyes open or closed, but there was an order effect with the second task having significantly lower common drive than the first. Common drive was also significantly lower when vibration was applied to one leg compared with when no vibration was applied. Common drive was higher as subjects swayed anteriorly as compared with when they swayed posteriorly. There were no significant differences in common drive across phases of the variable isometric force contraction. Common drive was higher during voluntary sway than during variable force production; both of these values were significantly lower than those derived from the quiet standing task. These results suggest that proprioceptive and sub-cortical inputs contribute to the co-modulation of the firing rate of soleus motor unit pairs of the left and right leg during standing posture.


1998 ◽  
Vol 80 (1) ◽  
pp. 365-376 ◽  
Author(s):  
Torsten Eken

Eken, Torsten. Spontaneous electromyographic activity in adult rat soleus muscle. J. Neurophysiol. 80: 365–376, 1998. Single-motor-unit and gross electromyograms (EMG) were recorded from the soleus muscle in six unrestrained rats. The median firing frequencies of nine motor units were in the 16–25 Hz range, in agreement with previous studies. One additional motor unit had a median firing frequency of 47 Hz. This unit and one of the lower-frequency units regularly fired doublets. Motor-unit firing frequency was well correlated to whole-muscle EMG during locomotion. Integrated rectified gross EMG revealed periods of continuous modulation, phasic high-amplitude events, and tonic low-amplitude segments. The tonic segments typically were caused by a small number of motor units firing at stable high frequencies (20–30 Hz) for extended periods of time without detectable activity in other units. This long-lasting firing in single motor units typically was initiated by transient mass activity, which recruited many units. However, only one or a few units continued firing at a stable high frequency. The tonic firing terminated spontaneously or in conjunction with an episode of mass activity. Different units were active in different tonic segments. Thus there was an apparent dissociation between activity in different single motor units and consequently between single-motor-unit activity and whole-muscle EMG. It is proposed that the maintained tonic motor-unit activity is caused by intrinsic motoneuron properties in the form of depolarizing plateau potentials.


1988 ◽  
Vol 59 (5) ◽  
pp. 1377-1394 ◽  
Author(s):  
A. R. Luff ◽  
D. D. Hatcher ◽  
K. Torkko

1. It was the aim of this study to determine the extent to which a mammalian motoneuron can sprout in a partially denervated muscle, which motor unit types are involved in sprouting, and whether polyneuronal innervation exists between sprouted units. 2. The fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus were partially denervated by unilateral section of the L7 ventral root in 12-wk-old kittens. After approximately 100 days single motor units were isolated, and their isometric contractile characteristics were determined. FDL units were also tested for their resistance to fatigue and categorized as fast-twitch, fatiguing fibers (FF), fast-twitch, fatigue-resistant fibers (FR), and slow-twitch, fatigue-resistant fibers (S). The presence of polyneuronal innervation was investigated between pairs of like and unlike units. 3. The extent of the original denervation was variable and was estimated from the distribution of motor axons innervating the muscle via the L7 and S1 (soleus) or L6 and L7 (FDL) ventral roots on the contralateral side. In soleus, denervations ranged from 75 to 98%; in FDL, 60 to 97% (denervations less than 60% were not investigated). In general, motor-unit force increased in proportion to the extent of the denervation. 4. Within soleus, unit force increased to over 2 N, which was about 16 times greater than the average for a normal muscle (133 mN). However, most units increased in force to between five and 12 times normal. 5. Within FDL, the force development of type S units was unaffected by partial denervation. Type FF units increased by up to 11 times (4.3 N) compared with normal FF units (395 mN) with most increasing between two and four times. FR units exhibited the greatest relative increase in force [up to 19 times (4.3 N) compared with normal (225 mN)]. Most units were two to seven times the normal. 6. A few FDL units were glycogen depleted, the muscles frozen, and cross sections prepared for histochemical analysis. This indicated that the largest units contained approximately 5,000 fibers, and there was little fiber hypertrophy. In the extensively denervated soleus muscle, large numbers of small, presumably denervated fibers were observed. The innervation ratio of several large units was determined indirectly using mean fiber area. This gave estimates of 3,000-4,000 fibers for the largest units. Again, fiber hypertrophy contributed little to the increase in unit force. It was concluded that the increased force of units in both muscles was largely attributable to terminal and axonal sprouting of the intact motor axons. 7. No evidence for polyneuronal innervation was found in either FDL or soleus muscle.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 69 (2) ◽  
pp. 442-448 ◽  
Author(s):  
J. Petit ◽  
M. Chua ◽  
C. C. Hunt

1. Isotonic shortening of cat superficial lumbrical muscles was studied during maximal tetanic contractions of single motor units of identified types. For each motor unit, the maximal speed of contraction, Vmax, was determined by extrapolating to zero the hyperbolic relation between applied tension and speed of shortening. 2. The maximal speeds of shortening of motor units formed a continuum with the highest velocities observed for the fast fatigable motor units and the lowest for the slow motor units. 3. On average, the maximum speed of shortening increased with the tetanic tension developed by the motor units. 4. In motor units with isometric twitch contraction times less than 35 ms, these times showed a significant inverse correlation with Vmax. Progressively longer contraction times were associated with rather small changes in Vmax. 5. The implications of these findings on the speed of muscle shortening during motor-unit recruitment are discussed.


2014 ◽  
Vol 112 (7) ◽  
pp. 1685-1691 ◽  
Author(s):  
Christopher J. Dakin ◽  
Brian H. Dalton ◽  
Billy L. Luu ◽  
Jean-Sébastien Blouin

Rectification of surface electromyographic (EMG) recordings prior to their correlation with other signals is a widely used form of preprocessing. Recently this practice has come into question, elevating the subject of EMG rectification to a topic of much debate. Proponents for rectifying suggest it accentuates the EMG spike timing information, whereas opponents indicate it is unnecessary and its nonlinear distortion of data is potentially destructive. Here we examine the necessity of rectification on the extraction of muscle responses, but for the first time using a known oscillatory input to the muscle in the form of electrical vestibular stimulation. Participants were exposed to sinusoidal vestibular stimuli while surface and intramuscular EMG were recorded from the left medial gastrocnemius. We compared the unrectified and rectified surface EMG to single motor units to determine which method best identified stimulus-EMG coherence and phase at the single-motor unit level. Surface EMG modulation at the stimulus frequency was obvious in the unrectified surface EMG. However, this modulation was not identified by the fast Fourier transform, and therefore stimulus coherence with the unrectified EMG signal failed to capture this covariance. Both the rectified surface EMG and single motor units displayed significant coherence over the entire stimulus bandwidth (1–20 Hz). Furthermore, the stimulus-phase relationship for the rectified EMG and motor units shared a moderate correlation ( r = 0.56). These data indicate that rectification of surface EMG is a necessary step to extract EMG envelope modulation due to motor unit entrainment to a known stimulus.


1991 ◽  
Vol 66 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
R. K. Powers ◽  
M. D. Binder

1. The tension produced by the combined stimulation of two to four single motor units of the cat tibialis posterior muscle was compared with the algebraic sum of the tensions produced by each individual motor unit. Comparisons were made under isometric conditions and during imposed changes in muscle length. 2. Under isometric conditions, the tension resulting from combined stimulation of units displayed marked nonlinear summation, as previously reported in other cat hindlimb muscles. On average, the measured tension was approximately 20% greater than the algebraic sum of the individual unit tensions. However, small trapezoidal movements imposed on the muscle during stimulation significantly reduced the degree of nonlinear summation both during and after the movement. This effect was seen with imposed movements as small as 50 microns. 3. The degree of nonlinear summation was not dependent on motor unit size or on stimulus frequency. The effect was also unrelated to tendon compliance because the degree of nonlinear summation of motor unit forces was unaffected by the inclusion of different amounts of the external tendon between the muscle and the force transducer. 4. Our results support previous suggestions that the force measured when individual motor units are stimulated under isometric conditions is reduced by friction between the active muscle fibers and adjacent passive fibers. These frictional effects are likely to originate in the connective tissue matrix connecting adjacent muscle fibers. However, because these effects are virtually eliminated by small movements, linear summation of motor unit tensions should occur at low force levels under nonisometric conditions.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 54 (6) ◽  
pp. 1383-1395 ◽  
Author(s):  
J. E. Gregory ◽  
D. L. Morgan ◽  
U. Proske

A continuing controversy surrounds the question of whether Golgi tendon organs are examples of receptors in which impulses may be generated at more than one site. This paper reports a systematic examination of a number of models incorporating single or multiple impulse generators and of the compatibility of their predictions with experimental observations. Two phenomena, in particular, that must be accounted for are nonlinear summation and cross-adaptation. When two motor units each with a direct effect on the tendon organ are stimulated together, the rate of discharge is greater than either individual rate but is less than their sum. In cross-adaptation a conditioning response elicited by one motor unit contraction produces adaptation of the discharge associated with stimulation of a second motor unit. A model with a central impulse generator can be modified to account for nonlinear summation by postulating a nonlinear transformation in the generator current-to-impulse rate conversion. Experiments measuring summation of responses to stimulation of three inputs produced results that did not support this model. Another variation of the model, which had a nonlinearity in the tension-to-current step and cross-connections (mechanical or neural) between tendon strands stressed by contracting muscle fibers, was able to account for the observations. A second model that provided the right predictions was a multiple impulse generator with cross-connections. Which of the two models best fits the experimental observations can be decided by comparing the calculated summation coefficients and cross-adaptation coefficients. A central impulse generator predicts a negative correlation, the multiple impulse generator a positive correlation. All of the observations were made using tendon organs of cat soleus muscle. Responses were recorded to stimulation of filaments of ventral root. In a comparison between 20 pairs of responses from six tendon organs the correlation between summation and cross-adaptation coefficients was found to be significantly positive. We conclude that the tendon organ model that accurately predicts all of the experimental observations incorporates multiple generators.


1988 ◽  
Vol 60 (6) ◽  
pp. 2138-2151 ◽  
Author(s):  
A. E. Olha ◽  
B. J. Jasmin ◽  
R. N. Michel ◽  
P. F. Gardiner

1. Rat plantaris muscles were subjected to chronic overload by the surgical removal of the soleus and most of the gastrocnemius muscles. Twelve to 16 wk later whole muscle and motor unit (ventral root dissection technique) contractile properties as well as histochemistry were determined. 2. Motor units were categorized as fast, fatigable (FF), fast, intermediate fatigue-resistant (FI), fast, fatigue-resistant (FR), and slow (S) based on contractile characteristics. Muscle fibers were identified as type I and type II according to myofibrillar ATPase staining. 3. Whole muscles demonstrated increases in wet weight, tetanic force, proportion of type I fibers, and mean cross-sectional areas of both type I and II fibers, as a result of chronic overload. 4. Tetanic tension increased by the same relative magnitude in all motor units whereas twitch tension remained unchanged. A significant change in the proportions of the motor unit types occurred in overloaded muscles, such that the latter contained higher proportions of FF and S units, and lower proportions of FI and FR units, than normal muscles. 5. The fatigue profile of a composite constructed from a summation of motor unit responses revealed that the overloaded plantaris displayed fatigue resistance similar to that of the normal plantaris for a given absolute force output. 6. Glycogen-depleted fibers of hypertrophied single motor units demonstrated uniform myofibrillar ATPase and SDH staining characteristics suggesting that metabolic adaptations among fibers of the same unit were similar after 12-16 wk of overload. 7. The finding that overload caused a uniform increase in the tetanic strength of all motor units, whereas alterations in fatigue resistance varied in degree and direction among unit types, demonstrate that these two properties are not controlled in parallel in this model. The smallest units maintain or even increase their fatigue resistance during the hypertrophic process, whereas high threshold units actually decrease in fatigue resistance.


1992 ◽  
Vol 67 (5) ◽  
pp. 1133-1145 ◽  
Author(s):  
S. R. Devasahayam ◽  
T. G. Sandercock

1. The force-velocity relationship of a motor unit can provide insight into the contractile proteins of its constituent fibers as well as fundamental information about the function and use of the motor unit. Although the force-velocity profiles of whole muscle and skinned mammalian fibers have been studied, technical difficulties have prevented similar studies on motor units. A technique is presented to directly measure the velocity of shortening of individual motor units from in vivo rat soleus muscle. 2. The soleus muscles of anesthetized rats were dissected free of surrounding tissue while their nerve and blood supplies were preserved. Both tendons were cut, and the distal tendon was attached to a servomechanism to control muscle length, whereas the proximal tendon was attached to a force transducer. Single motor units were stimulated via the ventral roots. 3. The major problem encountered in measuring the force-velocity profile of a motor unit was that the force from the large number of passive fibers and connective tissue in the soleus confounded the force produced by the small number of active fibers in the motor unit. This problem was minimized by measuring active motor unit tension during an isovelocity ramp. This allowed experimental measurement of the passive tension by shortening the muscle with an identical isovelocity ramp without, however, stimulating the motor unit. Active tension was estimated by subtracting the passive tension waveform from the waveform recorded when the motor unit was active. 4. The method substantially reduced the noise from the passive fibers; however, problems remained. The probable sources of error are discussed, with the most significant being the elasticity associated with the blood and nerve connections to surrounding tissue. The elasticity prevents uniform shortening velocities along the length of the active fibers, thereby introducing a systematic bias to measurements made at high velocities. These errors are most pronounced when the data are extrapolated to determine the maximum velocity of shortening (Vmax). Determination of velocity at peak power (Vpp) is a more robust measure; however, of the 34 motor units studied, only 19 exhibited a distinct peak in the power-force curve, indicating residual noise. 5. To assess the validity of using twitch contraction time as an index of the velocity of shortening, when possible, Vmax and Vpp of each motor unit were correlated with the inverse of its twitch contraction time. The correlation was poor (r less than 0.2), indicating that, although widely used, twitch contraction time is a poor index of contractile speed.


1980 ◽  
Vol 43 (6) ◽  
pp. 1615-1630 ◽  
Author(s):  
R. P. Dum ◽  
T. T. Kennedy

1. Intracellular recording and stimulation techniques were used to study the normal motor-unit population of tibialis anterior (TA) and extensor digitorum longus (EDL) muscles in the cat. Histochemical staining of the whole muscle and glycogen depletion of single motor units were performed. These results may be compared to those of their extensor antagonist, medial gastrocnemius (MG), as reported in studies by Burke and co-workers (7, 11, 13). 2. On the basis of two physiological properties, “sag” and fatigue resistance, the motor units in both TA and EDL could be classified into the same categories (types FF, F(int), FR, and S) as in MG (11). In contrast to MG, TA and EDL had nearly twice as many type-FR motor units and only half as many type-S motor units. 3. Glycogen depletion of representative single motor units of types FF and FR suggests a close correspondence between the physiological classification and a unique histochemical profile. No type-S units were depleted. 4. On the basis of histochemical staining, the muscle fibers in TA were presumed to belong to type-FF, -FR, or -S motor units. TA had a higher proportion of type-FR and a lower proportion of type-S muscle fibers than are found in MG. A striking feature was the variation in the proportion of each fiber type in different regions of TA. The anterolateral portion had mostly types FF and FR, while the posteriomedial portion had more types FR and S. 5. The twitch time to peak (TwTP) of isometric motor-unit contractions was generally quite fast with none having TwTP greater than 55 ms. The mean TwTP (not in EDL) and the mean tetanic tension of each motor-unit type were significantly different from each other. Most of the motor units exhibited significant postetanic potentiation of twitch tension and a corresponding lengthening of half-relaxation time and to a lesser degree, twitch contraction time. 6. There was a significant relationship between the inverse of motoneuronal input resistance and either tetanic tension or twitch contraction time. These relationships were not apparent when axonal conduction velocity rather than input resistance was used as an index of motoneuron size. The mean input resistances of the three major motor-unit types were significantly different while the mean conduction velocities of types FF and FR were nearly identical. A weak positive correlation was observed between the TwTP and the afterhyperpolarization of TA and EDL motoneurons. 7. In general, the mechanical characteristics and intrinsic motoneuronal properties of TA and EDL appear to parallel the organization of their extensor antagonist, MG, with some important quantitative differences that may reflect their different functional roles.


Sign in / Sign up

Export Citation Format

Share Document