Maximum shortening speed of motor units of various types in cat lumbrical muscles

1993 ◽  
Vol 69 (2) ◽  
pp. 442-448 ◽  
Author(s):  
J. Petit ◽  
M. Chua ◽  
C. C. Hunt

1. Isotonic shortening of cat superficial lumbrical muscles was studied during maximal tetanic contractions of single motor units of identified types. For each motor unit, the maximal speed of contraction, Vmax, was determined by extrapolating to zero the hyperbolic relation between applied tension and speed of shortening. 2. The maximal speeds of shortening of motor units formed a continuum with the highest velocities observed for the fast fatigable motor units and the lowest for the slow motor units. 3. On average, the maximum speed of shortening increased with the tetanic tension developed by the motor units. 4. In motor units with isometric twitch contraction times less than 35 ms, these times showed a significant inverse correlation with Vmax. Progressively longer contraction times were associated with rather small changes in Vmax. 5. The implications of these findings on the speed of muscle shortening during motor-unit recruitment are discussed.

1987 ◽  
Vol 30 (4) ◽  
pp. 552-558 ◽  
Author(s):  
Charles R. Larson ◽  
Gail B. Kempster ◽  
Michael K. Kistler

This investigation was designed to measure voice F 0 changes related to single motor unit (SMU) contractions in the cricothyroid and thyroarytenoid muscles. Four subjects (3 men and 1 woman) were recorded producing a prolonged vowel at modal pitch and loudness levels while simultaneous recordings of electromyograms (EMG) from the muscles were obtained. Voice F 0 changes unrelated to SMU firings in the muscles were eliminated using an averaging method previously described by Baer (1979). Results indicate that the time between discharge of the SMU and the peak in F 0 Change ("F 0 Latency") was variable and ranged from 5 to 20 ms for the thyroarytenoid and 6 to 75 ms for the cricothyroid muscle. Distinct oscillations in F 0 were always present in recordings from the woman subject and from the men when they phonated at higher-than-modal pitch levels. The findings are discussed in relation to SMU contraction times, biomechanics of the vocal folds, and the presence of jitter in normal voices.


2014 ◽  
Vol 112 (7) ◽  
pp. 1685-1691 ◽  
Author(s):  
Christopher J. Dakin ◽  
Brian H. Dalton ◽  
Billy L. Luu ◽  
Jean-Sébastien Blouin

Rectification of surface electromyographic (EMG) recordings prior to their correlation with other signals is a widely used form of preprocessing. Recently this practice has come into question, elevating the subject of EMG rectification to a topic of much debate. Proponents for rectifying suggest it accentuates the EMG spike timing information, whereas opponents indicate it is unnecessary and its nonlinear distortion of data is potentially destructive. Here we examine the necessity of rectification on the extraction of muscle responses, but for the first time using a known oscillatory input to the muscle in the form of electrical vestibular stimulation. Participants were exposed to sinusoidal vestibular stimuli while surface and intramuscular EMG were recorded from the left medial gastrocnemius. We compared the unrectified and rectified surface EMG to single motor units to determine which method best identified stimulus-EMG coherence and phase at the single-motor unit level. Surface EMG modulation at the stimulus frequency was obvious in the unrectified surface EMG. However, this modulation was not identified by the fast Fourier transform, and therefore stimulus coherence with the unrectified EMG signal failed to capture this covariance. Both the rectified surface EMG and single motor units displayed significant coherence over the entire stimulus bandwidth (1–20 Hz). Furthermore, the stimulus-phase relationship for the rectified EMG and motor units shared a moderate correlation ( r = 0.56). These data indicate that rectification of surface EMG is a necessary step to extract EMG envelope modulation due to motor unit entrainment to a known stimulus.


1991 ◽  
Vol 66 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
R. K. Powers ◽  
M. D. Binder

1. The tension produced by the combined stimulation of two to four single motor units of the cat tibialis posterior muscle was compared with the algebraic sum of the tensions produced by each individual motor unit. Comparisons were made under isometric conditions and during imposed changes in muscle length. 2. Under isometric conditions, the tension resulting from combined stimulation of units displayed marked nonlinear summation, as previously reported in other cat hindlimb muscles. On average, the measured tension was approximately 20% greater than the algebraic sum of the individual unit tensions. However, small trapezoidal movements imposed on the muscle during stimulation significantly reduced the degree of nonlinear summation both during and after the movement. This effect was seen with imposed movements as small as 50 microns. 3. The degree of nonlinear summation was not dependent on motor unit size or on stimulus frequency. The effect was also unrelated to tendon compliance because the degree of nonlinear summation of motor unit forces was unaffected by the inclusion of different amounts of the external tendon between the muscle and the force transducer. 4. Our results support previous suggestions that the force measured when individual motor units are stimulated under isometric conditions is reduced by friction between the active muscle fibers and adjacent passive fibers. These frictional effects are likely to originate in the connective tissue matrix connecting adjacent muscle fibers. However, because these effects are virtually eliminated by small movements, linear summation of motor unit tensions should occur at low force levels under nonisometric conditions.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 60 (6) ◽  
pp. 2138-2151 ◽  
Author(s):  
A. E. Olha ◽  
B. J. Jasmin ◽  
R. N. Michel ◽  
P. F. Gardiner

1. Rat plantaris muscles were subjected to chronic overload by the surgical removal of the soleus and most of the gastrocnemius muscles. Twelve to 16 wk later whole muscle and motor unit (ventral root dissection technique) contractile properties as well as histochemistry were determined. 2. Motor units were categorized as fast, fatigable (FF), fast, intermediate fatigue-resistant (FI), fast, fatigue-resistant (FR), and slow (S) based on contractile characteristics. Muscle fibers were identified as type I and type II according to myofibrillar ATPase staining. 3. Whole muscles demonstrated increases in wet weight, tetanic force, proportion of type I fibers, and mean cross-sectional areas of both type I and II fibers, as a result of chronic overload. 4. Tetanic tension increased by the same relative magnitude in all motor units whereas twitch tension remained unchanged. A significant change in the proportions of the motor unit types occurred in overloaded muscles, such that the latter contained higher proportions of FF and S units, and lower proportions of FI and FR units, than normal muscles. 5. The fatigue profile of a composite constructed from a summation of motor unit responses revealed that the overloaded plantaris displayed fatigue resistance similar to that of the normal plantaris for a given absolute force output. 6. Glycogen-depleted fibers of hypertrophied single motor units demonstrated uniform myofibrillar ATPase and SDH staining characteristics suggesting that metabolic adaptations among fibers of the same unit were similar after 12-16 wk of overload. 7. The finding that overload caused a uniform increase in the tetanic strength of all motor units, whereas alterations in fatigue resistance varied in degree and direction among unit types, demonstrate that these two properties are not controlled in parallel in this model. The smallest units maintain or even increase their fatigue resistance during the hypertrophic process, whereas high threshold units actually decrease in fatigue resistance.


2002 ◽  
Vol 88 (1) ◽  
pp. 265-276 ◽  
Author(s):  
Anna M. Taylor ◽  
Julie W. Steege ◽  
Roger M. Enoka

The purpose of the study was to quantify the effect of motor-unit synchronization on the spike-triggered average forces of a population of motor units. Muscle force was simulated by defining mechanical and activation characteristics of the motor units, specifying motor neuron discharge times, and imposing various levels of motor-unit synchronization. The model comprised 120 motor units. Simulations were performed for motor units 5–120 to compare the spike-triggered average responses in the presence and absence of motor-unit synchronization with the motor-unit twitch characteristics defined in the model. To synchronize motor-unit activity, selected motor-unit discharge times were adjusted; this kept the number of action potentials constant across the three levels of synchrony for each motor unit. Because there was some overlap of motor-unit twitches even at minimal discharge rates, the simulations indicated that spike-triggered averaging underestimates the twitch force of all motor units and the contraction time of motor units with contraction times longer than 49 ms. Although motor-unit synchronization increased the estimated twitch force and decreased the estimated contraction time of all motor units, spike-triggered average force changed systematically with the level of synchrony in motor units 59–120 (upper 90% of the range of twitch forces). However, the reduction in contraction time was similar for moderate and high synchrony. In conclusion, spike-triggered averaging appears to provide a biased estimate of the distribution of twitch properties for a population of motor units because twitch fusion causes an underestimation of twitch force for slow units and motor-unit synchronization causes an overestimation of force for fast motor units.


1967 ◽  
Vol 50 (6) ◽  
pp. 197-218 ◽  
Author(s):  
Michael Bárány

Myosin was isolated from 14 different muscles (mammals, lower vertebrates, and invertebrates) of known maximal speed of shortening. These myosin preparations were homogeneous in the analytical ultracentrifuge or, in a few cases, showed, in addition to the main myosin peak, part of the myosin in aggregated form. Actin- and Ca++-activated ATPase activities of the myosins were generally proportional to the speed of shortening of their respective muscles; i.e. the greater the intrinsic speed, the higher the ATPase activity. This relation was found when the speed of shortening ranged from 0.1 to 24 muscle lengths/sec. The temperature coefficient of the Ca++-activated myosin ATPase was the same as that of the speed of shortening, Q10 about 2. Higher Q10 values were found for the actin-activated myosin ATPase, especially below 10°C. By using myofibrils instead of reconstituted actomyosin, Q10 values close to 2 could be obtained for the Mg++-activated myofibrillar ATPase at ionic strength of 0.014. In another series of experiments, myosin was isolated from 11 different muscles of known isometric twitch contraction time. The ATPase activity of these myosins was inversely proportional to the contraction time of the muscles. These results suggest a role for the ATPase activity of myosin in determining the speed of muscle contraction. In contrast to the ATPase activity of myosin, which varied according to the speed of contraction, the F-actin-binding ability of myosin from various muscles was rather constant.


1992 ◽  
Vol 67 (5) ◽  
pp. 1133-1145 ◽  
Author(s):  
S. R. Devasahayam ◽  
T. G. Sandercock

1. The force-velocity relationship of a motor unit can provide insight into the contractile proteins of its constituent fibers as well as fundamental information about the function and use of the motor unit. Although the force-velocity profiles of whole muscle and skinned mammalian fibers have been studied, technical difficulties have prevented similar studies on motor units. A technique is presented to directly measure the velocity of shortening of individual motor units from in vivo rat soleus muscle. 2. The soleus muscles of anesthetized rats were dissected free of surrounding tissue while their nerve and blood supplies were preserved. Both tendons were cut, and the distal tendon was attached to a servomechanism to control muscle length, whereas the proximal tendon was attached to a force transducer. Single motor units were stimulated via the ventral roots. 3. The major problem encountered in measuring the force-velocity profile of a motor unit was that the force from the large number of passive fibers and connective tissue in the soleus confounded the force produced by the small number of active fibers in the motor unit. This problem was minimized by measuring active motor unit tension during an isovelocity ramp. This allowed experimental measurement of the passive tension by shortening the muscle with an identical isovelocity ramp without, however, stimulating the motor unit. Active tension was estimated by subtracting the passive tension waveform from the waveform recorded when the motor unit was active. 4. The method substantially reduced the noise from the passive fibers; however, problems remained. The probable sources of error are discussed, with the most significant being the elasticity associated with the blood and nerve connections to surrounding tissue. The elasticity prevents uniform shortening velocities along the length of the active fibers, thereby introducing a systematic bias to measurements made at high velocities. These errors are most pronounced when the data are extrapolated to determine the maximum velocity of shortening (Vmax). Determination of velocity at peak power (Vpp) is a more robust measure; however, of the 34 motor units studied, only 19 exhibited a distinct peak in the power-force curve, indicating residual noise. 5. To assess the validity of using twitch contraction time as an index of the velocity of shortening, when possible, Vmax and Vpp of each motor unit were correlated with the inverse of its twitch contraction time. The correlation was poor (r less than 0.2), indicating that, although widely used, twitch contraction time is a poor index of contractile speed.


1980 ◽  
Vol 43 (6) ◽  
pp. 1615-1630 ◽  
Author(s):  
R. P. Dum ◽  
T. T. Kennedy

1. Intracellular recording and stimulation techniques were used to study the normal motor-unit population of tibialis anterior (TA) and extensor digitorum longus (EDL) muscles in the cat. Histochemical staining of the whole muscle and glycogen depletion of single motor units were performed. These results may be compared to those of their extensor antagonist, medial gastrocnemius (MG), as reported in studies by Burke and co-workers (7, 11, 13). 2. On the basis of two physiological properties, “sag” and fatigue resistance, the motor units in both TA and EDL could be classified into the same categories (types FF, F(int), FR, and S) as in MG (11). In contrast to MG, TA and EDL had nearly twice as many type-FR motor units and only half as many type-S motor units. 3. Glycogen depletion of representative single motor units of types FF and FR suggests a close correspondence between the physiological classification and a unique histochemical profile. No type-S units were depleted. 4. On the basis of histochemical staining, the muscle fibers in TA were presumed to belong to type-FF, -FR, or -S motor units. TA had a higher proportion of type-FR and a lower proportion of type-S muscle fibers than are found in MG. A striking feature was the variation in the proportion of each fiber type in different regions of TA. The anterolateral portion had mostly types FF and FR, while the posteriomedial portion had more types FR and S. 5. The twitch time to peak (TwTP) of isometric motor-unit contractions was generally quite fast with none having TwTP greater than 55 ms. The mean TwTP (not in EDL) and the mean tetanic tension of each motor-unit type were significantly different from each other. Most of the motor units exhibited significant postetanic potentiation of twitch tension and a corresponding lengthening of half-relaxation time and to a lesser degree, twitch contraction time. 6. There was a significant relationship between the inverse of motoneuronal input resistance and either tetanic tension or twitch contraction time. These relationships were not apparent when axonal conduction velocity rather than input resistance was used as an index of motoneuron size. The mean input resistances of the three major motor-unit types were significantly different while the mean conduction velocities of types FF and FR were nearly identical. A weak positive correlation was observed between the TwTP and the afterhyperpolarization of TA and EDL motoneurons. 7. In general, the mechanical characteristics and intrinsic motoneuronal properties of TA and EDL appear to parallel the organization of their extensor antagonist, MG, with some important quantitative differences that may reflect their different functional roles.


2005 ◽  
Vol 94 (1) ◽  
pp. 62-69 ◽  
Author(s):  
G. Mochizuki ◽  
T. D. Ivanova ◽  
S. J. Garland

During standing posture, the soleus muscles acts to control sway in the anteroposterior (AP) direction. The soleus muscles bilaterally share a common function during standing tasks. We sought to determine whether common descending inputs, as evidenced by the synchronization of bilateral motor unit pairs, were employed as a strategy to control this common function. Single motor units were recorded from the soleus muscles in subjects who stood on adjacent force platforms for 5 min with their eyes open or closed. While standing with the eyes open, only 4/39 bilateral motor unit pairs showed significant synchronization. Similarly, only 3/36 motor unit pairs were significantly synchronized during the eyes closed task. The low incidence of synchronization was observed despite a high correlation in the amount of sway in the AP direction between legs in both the eyes open and eyes closed tasks (ρ = 0.80 and ρ = 0.83, respectively). When the extent of synchronization was assessed between pairs of motor units within the same leg with the eyes open, 10/12 pairs were synchronized. Furthermore, when pairs of soleus motor units were recorded both bilaterally and unilaterally during voluntary isometric ankle plantarflexion, only 4/30 bilateral pairs showed significant synchronization, whereas 19/24 unilateral pairs had significant synchronization. In this study, there was little evidence of the existence of synchronization between bilateral soleus motor unit pairs in either postural tasks or voluntary isometric contractions. In cases in which bilateral synchronization was observed, it was considerably weaker than the synchronization of motor units within a single soleus muscle. The results of this study reveal that it is rather uncommon for bilateral soleus motoneurons to receive common descending synaptic inputs, whereas two motoneurons within a single soleus muscle do.


1994 ◽  
Vol 72 (4) ◽  
pp. 1885-1896 ◽  
Author(s):  
E. Smits ◽  
P. K. Rose ◽  
T. Gordon ◽  
F. J. Richmond

1. We depleted single motor units in feline sartorius muscles of glycogen by stimulating their motoneurons intracellularly. We mapped the intramuscular distribution of depleted fibers by inspecting histological cross-sections throughout the length of sartorius. 2. We selected ten depleted motor units for detailed study and quantitative analysis. Nine motor units were located in the anterior head of sartorius. One was located in a muscle whose distal half appeared to have been damaged some time before the acute experiment. A single motor unit was located in the medial head of sartorius. 3. Five motor units were composed of fast-twitch glycolytic (FG) muscle fibers, two of fast-twitch oxidative glycolytic (FOG) muscle fibers, and three of slow-twitch oxidative (SO) muscle fibers. Estimates of the numbers of depleted fibers in motor units of anterior sartorius indicated that FG motor units were larger (mean 566 fibers) than FOG and SO motor units (SO mean 190, FOG mean 156 fibers). The SO motor unit in the damaged muscle had 550 fibers. One motor unit depleted in the medial head of sartorius had 270 fibers with FG profiles. 4. Muscle fibers belonging to each anterior motor unit were never distributed throughout the whole cross-section of anterior sartorius at any proximodistal level. Furthermore, fibers were distributed nonuniformly along the proximodistal axis of the muscle. In most muscles at least a few depleted fibers were found at all proximodistal levels. However, in one normal muscle and the damaged muscle, depleted fibers were confined to the proximal end. 5. The fibers in the medial motor unit were confined to a strip that did not extend across the whole cross-section of the muscle head. Fibers within this strip were scattered quite evenly from origin to insertion. This medial FG motor unit occupied a smaller territory and contained fewer fibers than anterior motor units of the same histochemical type. 6. These results show that sartorius motor units are not distributed uniformly in the mediolateral plane; those in anterior sartorius were distributed asymmetrically in the proximodistal axis as well. This finding has important functional implications for the way in which we model force development and transmission in sartorius and other long muscles.


Sign in / Sign up

Export Citation Format

Share Document