Vestibulothalamic projections in man--a sixth primary sensory pathway

1978 ◽  
Vol 41 (2) ◽  
pp. 394-401 ◽  
Author(s):  
P. A. Hawrylyshyn ◽  
A. M. Rubin ◽  
R. R. Tasker ◽  
L. W. Organ ◽  
J. M. Fredrickson

1. Responses suggesting activation of the vestibular system, elicited by electrical stimulation of the human thalamus during 22 routine stereotaxic neurosurgical procedures, were examined in a retrospective study to determine the possible existence of vestibulothalamo-cortical projections in man. 2. Such responses were most frequently described as sensations of movement through space and were associated with two distinct vestibulothalamic projections: a) an anterior relay was situated ventral to the medial lemniscus, passing lateral to the red nucleus and dorsal to the subthalamic nucleus prior to terminating in the nucleus ventrointermedius (Vim) (comparable to VPLo in primates); b) a posterior relay associated with the auditory pathway (lateral lemniscus and brachium of the inferior colliculus) projected to the medial geniculate body. 3. The production of sensations of motion in conscious patients by stimulating areas that are similar to those reported constituting vestibulothalamic pathways in cats and primates implies a distinct primary sensory cortical projection for processing information from the vestibular receptors pertaining to the recognition of spatial movements.

2019 ◽  
Author(s):  
Paul Glad Mihai ◽  
Nadja Tschentscher ◽  
Katharina von Kriegstein

AbstractRecognising speech in background noise is a strenuous daily activity, yet most humans can master it. A mechanistic explanation of how the human brain deals with such sensory uncertainty is the Bayesian Brain Hypothesis. In this view, the brain uses a dynamic generative model to simulate the most likely trajectory of the speech signal. Such simulation account can explain why there is a task-dependent modulation of sensory pathway structures (i.e., the sensory thalami) for recognition tasks that require tracking of fast-varying stimulus properties (i.e., speech) in contrast to relatively constant stimulus properties (e.g., speaker identity) despite the same stimulus input. Here we test the specific hypothesis that this task-dependent modulation for speech recognition increases in parallel with the sensory uncertainty in the speech signal. In accordance with this hypothesis, we show—by using ultra-high-resolution functional magnetic resonance imaging in human participants—that the task-dependent modulation of the left primary sensory thalamus (ventral medial geniculate body, vMGB) for speech is particularly strong when recognizing speech in noisy listening conditions in contrast to situations where the speech signal is clear. Exploratory analyses showed that this finding was specific to the left vMGB; it was not present in the midbrain structure of the auditory pathway (left inferior colliculus, IC). The results imply that speech in noise recognition is supported by modifications at the level of the subcortical sensory pathway providing driving input to the auditory cortex.


2019 ◽  
Author(s):  
Paul Glad Mihai ◽  
Michelle Moerel ◽  
Federico de Martino ◽  
Robert Trampel ◽  
Stefan Kiebel ◽  
...  

AbstractSensory thalami are central sensory pathway stations for information processing. Their role for human cognition and perception, however, remains unclear. Recent evidence suggests a specific involvement of the sensory thalami in speech recognition. In particular, the auditory thalamus (medial geniculate body, MGB) response is modulated by speech recognition tasks and the amount of this task-dependent modulation is associated with speech recognition abilities. Here we tested the specific hypothesis that this behaviorally relevant modulation is present in the MGB subsection that corresponds to the primary auditory pathway (i.e., the ventral MGB [vMGB]). We used ultra-high field 7T fMRI to identify the vMGB, and found a significant positive correlation between the amount of task-dependent modulation and the speech recognition performance across participants within left vMGB, but not within the other MGB subsections. These results imply that modulation of thalamic driving input to the auditory cortex facilitates speech recognition.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Paul Glad Mihai ◽  
Michelle Moerel ◽  
Federico de Martino ◽  
Robert Trampel ◽  
Stefan Kiebel ◽  
...  

Sensory thalami are central sensory pathway stations for information processing. Their role for human cognition and perception, however, remains unclear. Recent evidence suggests an involvement of the sensory thalami in speech recognition. In particular, the auditory thalamus (medial geniculate body, MGB) response is modulated by speech recognition tasks and the amount of this task-dependent modulation is associated with speech recognition abilities. Here, we tested the specific hypothesis that this behaviorally relevant modulation is present in the MGB subsection that corresponds to the primary auditory pathway (i.e., the ventral MGB [vMGB]). We used ultra-high field 7T fMRI to identify the vMGB, and found a significant positive correlation between the amount of task-dependent modulation and the speech recognition performance across participants within left vMGB, but not within the other MGB subsections. These results imply that modulation of thalamic driving input to the auditory cortex facilitates speech recognition.


Author(s):  
Pia Brinkmann ◽  
Sonja A. Kotz ◽  
Jasper V. Smit ◽  
Marcus L. F. Janssen ◽  
Michael Schwartze

AbstractTinnitus is the perception of a ‘ringing’ sound without an acoustic source. It is generally accepted that tinnitus develops after peripheral hearing loss and is associated with altered auditory processing. The thalamus is a crucial relay in the underlying pathways that actively shapes processing of auditory signals before the respective information reaches the cerebral cortex. Here, we review animal and human evidence to define thalamic function in tinnitus. Overall increased spontaneous firing patterns and altered coherence between the thalamic medial geniculate body (MGB) and auditory cortices is observed in animal models of tinnitus. It is likely that the functional connectivity between the MGB and primary and secondary auditory cortices is reduced in humans. Conversely, there are indications for increased connectivity between the MGB and several areas in the cingulate cortex and posterior cerebellar regions, as well as variability in connectivity between the MGB and frontal areas regarding laterality and orientation in the inferior, medial and superior frontal gyrus. We suggest that these changes affect adaptive sensory gating of temporal and spectral sound features along the auditory pathway, reflecting dysfunction in an extensive thalamo-cortical network implicated in predictive temporal adaptation to the auditory environment. Modulation of temporal characteristics of input signals might hence factor into a thalamo-cortical dysrhythmia profile of tinnitus, but could ultimately also establish new directions for treatment options for persons with tinnitus.


1967 ◽  
Vol 38 (3) ◽  
pp. 337-349 ◽  
Author(s):  
J. S. TINDAL ◽  
G. S. KNAGGS ◽  
A. TURVEY

SUMMARY The afferent path of the milk-ejection reflex has been studied in the brain of the lactating guinea-pig in light pentobarbitone anaesthesia. Square-wave pulses were applied between an indifferent electrode in the scalp and a monopolar electrode inserted stereotaxically in the brain. The brain was transected at the mid-cerebellar level to eliminate activation of the sympathetico-adrenal system, and milk-ejection pressure was monitored to detect release of neurohypophysial hormone(s). The afferent path of the reflex in the caudal midbrain was very compact and lay in the lateral tegmentum. More rostrally, milk-ejection responses were obtained from the tectum and mesencephalic central grey, but the major pathway remained in the lateral tegmentum and passed forward to lie ventromedial to the medial geniculate body, after which it divided into two components which we have termed the dorsal and ventral paths. The dorsal path traversed dorsomedially across the brainstem to reach the parafascicular thalamic nucleus, the extreme rostral central grey and the periventricular region at the meso-diencephalic boundary, and then continued forward to reach the pituitary stalk and the medial and dorsal hypothalamus. The ventral path traversed ventromedially to enter the subthalamus and then the lateral hypothalamus, in which it passed both to the rostral basal diencephalon and to the pituitary stalk. In the diencephalon, milk-ejection responses were obtained after stimulation of part of the ventral thalamus, the lateral, dorsal and anterior hypothalamic areas, the dorsomedial, ventromedial, arcuate, supraoptic and paraventricular nuclei, and the pituitary stalk. It is suggested from these findings that in the guinea-pig the suckling stimulus ascends by the spinothalamic system, and continues rostrally to relay with the medial and ventral thalamus, the dorsal longitudinal fasciculus and the medial forebrain bundle. Other ascending pathways in the medial lemniscus and mammillary peduncle may also be involved, but appear to be of only minor significance.


2002 ◽  
Vol 88 (3) ◽  
pp. 1433-1450 ◽  
Author(s):  
Michael P. Harms ◽  
Jennifer R. Melcher

Sound repetition rate plays an important role in stream segregation, temporal pattern recognition, and the perception of successive sounds as either distinct or fused. This study was aimed at elucidating the neural coding of repetition rate and its perceptual correlates. We investigated the representations of rate in the auditory pathway of human listeners using functional magnetic resonance imaging (fMRI), an indicator of population neural activity. Stimuli were trains of noise bursts presented at rates ranging from low (1–2/s; each burst is perceptually distinct) to high (35/s; individual bursts are not distinguishable). There was a systematic change in the form of fMRI response rate-dependencies from midbrain to thalamus to cortex. In the inferior colliculus, response amplitude increased with increasing rate while response waveshape remained unchanged and sustained. In the medial geniculate body, increasing rate produced an increase in amplitude and a moderate change in waveshape at higher rates (from sustained to one showing a moderate peak just after train onset). In auditory cortex (Heschl's gyrus and the superior temporal gyrus), amplitude changed somewhat with rate, but a far more striking change occurred in response waveshape—low rates elicited a sustained response, whereas high rates elicited an unusual phasic response that included prominent peaks just after train onset and offset. The shift in cortical response waveshape from sustained to phasic with increasing rate corresponds to a perceptual shift from individually resolved bursts to fused bursts forming a continuous (but modulated) percept. Thus at high rates, a train forms a single perceptual “event,” the onset and offset of which are delimited by the on and off peaks of phasic cortical responses. While auditory cortex showed a clear, qualitative correlation between perception and response waveshape, the medial geniculate body showed less correlation (since there was less change in waveshape with rate), and the inferior colliculus showed no correlation at all. Overall, our results suggest a population neural representation of the beginning and the end of distinct perceptual events that is weak or absent in the inferior colliculus, begins to emerge in the medial geniculate body, and is robust in auditory cortex.


Author(s):  
Ariel Gilad ◽  
Ido Maor ◽  
Adi Mizrahi

AbstractLearning to associate sensory stimuli with a chosen action has been classically attributed to the cortex. Whether the thalamus, considered mainly as an upstream area relative to cortex, encodes learning-related information is still largely unknown. We studied learning-related activity in the dorsal and medial regions of the medial geniculate body (MGB), part of the non-lemniscal auditory pathway. Using fiber photometry, we continuously imaged population calcium dynamics as mice learned a go/no-go auditory discrimination task. The MGB was tuned to frequency shortly after stimulus onset and responded to cognitive features like the choice of the mouse several hundred milliseconds later. Encoding of choice in the MGB increased with learning, and was highly correlated with the learning curves of the mice. MGB also encoded motor parameters of the mouse during the task. These results provide evidence that the MGB encodes task- motor- and learning-related information.


2020 ◽  
Author(s):  
Gioia De Franceschi ◽  
Tania Rinaldi Barkat

Sensory processing varies depending on behavioral context. Here, we asked how task-engagement modulates neurons in the auditory system. We trained mice in a simple tone-detection task, and compared their neuronal activity during passive hearing and active listening. Electrophysiological extracellular recordings in the inferior colliculus, medial geniculate body, primary auditory cortex and anterior auditory field revealed widespread modulations across all regions and cortical layers, and in both putative regular and fast-spiking cortical neurons. Clustering analysis unveiled ten distinct modulation patterns that could either enhance or suppress neuronal activity. Task-engagement changed the tone-onset response in most neurons. Such modulations first emerged in subcortical areas, ruling out cortical feedback from primary auditory areas as the only mechanism underlying subcortical modulations. Half the neurons additionally displayed late modulations associated with licking, arousal or reward. Our results reveal the presence of functionally distinct subclasses of neurons, differentially sensitive to specific task-related variables but anatomically distributed along the auditory pathway.


Sign in / Sign up

Export Citation Format

Share Document