Neural correlates of auditory fatigue: frequency-dependent changes in activity of single cochlear nerve fibers

1978 ◽  
Vol 41 (4) ◽  
pp. 987-1006 ◽  
Author(s):  
B. L. Lonsbury-Martin ◽  
M. B. Meikle

1. These experiments were designed to test whether intense pure tones produced greater depression of cochlear nerve fibers tuned to the exposure frequency or of those tuned to frequencies above the exposure frequency. Spike discharges of single fibers were studied in anesthetized cats before, during, and after exposures lasting 1 min. Exposure frequency was varied relative to each fiber's characteristic frequency (CF), and was either at the CF or 1/2 octave above (+1/2 oct) or 1/2 octave below (-1/2 oct) the CF. Exposure levels were 85 or 90 dB SPL. Effects of the various exposures on driven discharge rates were evaluated using standard test stimuli at each fiber's CF. In addition, nonevoked discharges were measured during the brief quiet intervals between test stimuli ("interstimulus activity") as well as during extended quiet periods ("resting activity"). Major results were as follows: 2. All the exposures resulted in depression of the driven discharge rates; however, these effects were strongly dependent on the exposure frequency. The depression was greatest and endured the longest following -1/2 oct exposures at 90 dB. The CF exposures at 85 and 90 dB were much less depressant, as were exposures at -1/2 oct at 85 dB; these three exposures resulted in very similar recovery functions. The +1/2 oct exposures produced little or no depression, whether at 85 or 90 dB. 3. Interstimulus activity was depressed immediately following all exposures, but recovered to normal quickly than did driven discharge rates. Following exposures at -1/2 oct at 90 dB, recovery was non-monotonic in that an extended period of supernormality preceded the return to normal rates. During this period of elevated activity, the interstimulus activity approached but never exceeded the resting rate of the same fiber. 4. Resting activity recovered even more rapidly than interstimulus activity, being completely normal by 1 min following all exposures. 5. These results constitute the first demonstration that the CF is not necessarily the most depressant exposure frequency for a given cochlear nerve fiber. Further, the results imply that the half-octave (or greater) shifts of the point of maximum hearing loss, so characteristic of auditory fatigue, may be accounted for by frequency-dependent alterations in the responsiveness of cochlear nerve fibers.

2021 ◽  
Author(s):  
Antoine Huet ◽  
Charlène Batrel ◽  
Xavier Dubernard ◽  
Jean-Charles Kleiber ◽  
Gilles Desmadryl ◽  
...  

AbstractInformation in sound stimuli is conveyed from sensory hair cells to the cochlear nuclei by the firing of auditory nerve fibers (ANFs). For obvious ethical reasons, single unit recordings from the cochlear nerve have never been performed in human, thus functional hallmarks of ANFs are unknown. By filtering and rectifying the electrical signal recorded at the round window of gerbil cochleae, we reconstructed a peri-stimulus time response (PSTR), with a waveform similar to the peri-stimulus time histograms (PSTHs) recorded from single ANFs. Pair-by-pair analysis of simultaneous PSTR and PSTH recordings in gerbil provided a model to predict the rapid adaptation and spontaneous discharge rates (SR) in a population of ANFs according to their location in the cochlea. We then probed the model in the mouse, in which the SR-based distribution of ANFs differs from the gerbil. We show that the PSTR-based predictions of the rapid adaptation time constant and mean SR across frequency again matched those obtained by recordings from single ANFs. Using PSTR recorded from the human cochlear nerve in 8 normal-hearing patients who underwent cerebellopontine angle surgeries for a functional cranial-nerve disorders (trigeminal neuralgia or hemifacial spasm), we predicted a rapid adaptation of about 3 milliseconds and a mean SR of 23 spikes/s in the 4 kHz frequency range in human ANFs. Together, our results support the use of PSTR as a promising diagnostic tool to map the auditory nerve in humans, thus opening new avenues to better understanding neuropathies, tinnitus, and hyperacusis.


1985 ◽  
Vol 1 ◽  
pp. S2
Author(s):  
Zheng Chang-Mu ◽  
Susumu Ito ◽  
Junsei Horikawa ◽  
Keiichi Murata
Keyword(s):  

2008 ◽  
Vol 104 (5) ◽  
pp. 1394-1401 ◽  
Author(s):  
David F. Donnelly

The mechanism by which action potentials (APs) are generated in afferent nerve fibers in the carotid body is unknown, but it is generally speculated to be release of an excitatory transmitter and synaptic depolarizing events. However, previous results suggested that Na+ channels in the afferent nerve fibers play an important role in this process. To better understand the potential mechanism by which Na+ channels may generate APs, a mathematical model of chemoreceptor nerve fibers that incorporated Hodgkin-Huxley-type Na+ channels with kinetics of activation and inactivation, as determined previously from recordings of petrosal chemoreceptor neurons, was constructed. While the density of Na+ channels was kept constant, spontaneous APs arose in nerve terminals as the axonal diameter was reduced to that in rat carotid body. AP excitability and pattern were similar to those observed in chemoreceptor recordings: 1) a random pattern at low- and high-frequency discharge rates, 2) a high sensitivity to reductions in extracellular Na+ concentration, and 3) a variation in excitability that increased with AP generation rate. Taken together, the results suggest that an endogenous process in chemoreceptor nerve terminals may underlie AP generation, a process independent of synaptic depolarizing events.


1986 ◽  
Vol 95 (5) ◽  
pp. 460-465 ◽  
Author(s):  
J. Gail Neely ◽  
Jack Hough

Two very small intracanalicular tumors, resected en bloc with the complete eighth nerve, were serially sectioned in order to study the relationship between the tumors and the nerves of origin. Both cases met the size criteria for hearing conservation surgery; however, the patient with the smaller tumor and the better hearing had no recognizable cochlear nerve fibers passing the tumor. The cochlear nerve in the patient with poorer hearing was completely free of tumor. The tumor with the infiltrated cochlear nerve seemed to originate from the inferior vestibular nerve. The other tumor seemed to arise from the superior vestibular nerve. Proximally, the tumors occupied a more central location in the involved nerves, but they abruptly became eccentric and exophytic as they proceeded laterally. Nerve fibers remaining about the tumors were displaced to the periphery. These nerve fiber aggregates became quite thin and attenuated, frequently separating into smaller aggregates which, ultimately, were incorporated into the tumors. As fibers came closer to the tumors, they tended to change from their longitudinal direction toward a more circumferential orientation about the surface of the tumors. The tumor-nerve fiber interfaces were quite variable throughout the course of the tumor, ranging from large aggregates of nerve fibers distinctly separate from the tumors to aggregates separate but tightly applied to the tumors without a tissue plane between, to aggregates partially incorporated within the periphery of the tumors, to aggregates completely incorporated into the periphery of the tumors. Frequently several types of interfaces were seen in the same section. These findings showed that in one case the cochlear nerve could have been surgically separated from the acoustic tumor; in the other specimen, it could not have been separated. It was impossible to predict between the two. In these two very small tumors, the gross specimen observation correlated reasonably well with the histology, thus suggesting that intraoperative observation may be a predictor in hearing conservation surgery; however, previous studies in slightly larger tumors make this an extremely guarded concept.


1974 ◽  
Vol 55 (2) ◽  
pp. 467-467
Author(s):  
Warren M. Little‐Field ◽  
Russell R. Pfeiffer ◽  
Charles E. Molnar
Keyword(s):  

1973 ◽  
Vol 54 (1) ◽  
pp. 283-284 ◽  
Author(s):  
Catherine A. Smith ◽  
Betty J. Haglan
Keyword(s):  

2009 ◽  
Vol 110 (4) ◽  
pp. 648-655 ◽  
Author(s):  
Tomio Sasaki ◽  
Tadahisa Shono ◽  
Kimiaki Hashiguchi ◽  
Fumiaki Yoshida ◽  
Satoshi O. Suzuki

Object The authors analyzed the tumor capsule and the tumor–nerve interface in vestibular schwannomas (VSs) to define the ideal cleavage plane for maximal tumor removal with preservation of facial and cochlear nerve functions. Methods Surgical specimens from 21 unilateral VSs were studied using classical H & E, Masson trichrome, and immunohistochemical staining against myelin basic protein. Results The authors observed a continuous thin connective tissue layer enveloping the surfaces of the tumors. Some nerve fibers, which were immunopositive to myelin basic protein and considered to be remnants of vestibular nerve fibers, were also identified widely beneath the connective tissue layer. These findings indicated that the socalled “tumor capsule” in VSs is the residual vestibular nerve tissue itself, consisting of the perineurium and underlying nerve fibers. There was no structure bordering the tumor parenchyma and the vestibular nerve fibers. In specimens of tumors removed en bloc with the cochlear nerves, the authors found that the connective tissue layer, corresponding to the perineurium of the cochlear nerve, clearly bordered the nerve fibers and tumor tissue. Conclusions Based on these histological observations, complete tumor resection can be achieved by removal of both tumor parenchyma and tumor capsule when a clear border between the tumor capsule and facial or cochlear nerve fibers can be identified intraoperatively. Conversely, when a severe adhesion between the tumor and facial or cochlear nerve fibers is observed, dissection of the vestibular nerve–tumor interface (the subcapsular or subperineurial dissection) is recommended for preservation of the functions of these cranial nerves.


1996 ◽  
Vol 76 (2) ◽  
pp. 770-787 ◽  
Author(s):  
J. C. Saunders ◽  
D. E. Doan ◽  
C. P. Poje ◽  
K. A. Fisher

1. Single-neuron behavior in the cochlear nerve of neonatal (3-day-old) chicks was examined after exposure to a 120-dB SPL pure tone (0.9 kHz) for 48 h. Exposed animals were tested after 0 days or 12 days of recovery. Nonexposed chicks, age-matched to the exposed animals, formed two control groups. 2. Spectral response plots were obtained from each cell. These plots described the neuron discharge rates in response to 1,767 tone burst stimuli, each with a unique frequency-intensity combination. The tone bursts were presented at frequencies between 0.1 and 4.5 kHz and for intensities between 0 and 100 dB SPL. From these plots the characteristic frequency (CF), CF threshold, and sharpness of tuning (Q10 dB) were derived for each cell. Frequency response-area functions at selected stimulus levels and rate-intensity functions at the CF were also constructed from the spectral response plots. In addition, spontaneous activity was determined. Data were obtained from 903 cells. 3. Neuron activity in the control cells revealed no differences between CF thresholds, Q10 dB, or spontaneous activity in the two age groups. However, age differences at all frequencies were noted in the rate-intensity functions. 4. A frequency-dependent loss in CF threshold was observed in the 0-day recovered cells. The threshold shift (relative to age-matched control cells) was 55-65 dB between 0.8 and 1.5 kHz, but only 10-15 dB between 0.1-0.4 kHz and 2.5-3.5 kHz. The exposed cells showed no loss in frequency selectivity (Q10 dB) at < 0.5 kHz, whereas above this frequency an increasing deterioration in tuning was noted. Spontaneous activity in the 0-day cells was suppressed across the entire range of CFs. The rate-intensity function of exposed cells had a steeper growth rate than that of control cells. 5. At 12 days of recovery, CF threshold, Q10 dB, and spontaneous activity all recovered to the levels exhibited by age-matched control cells. However, the rate-intensity function for cells with CFs between 0.8 and 1.0 kHz showed abnormal growth and higher discharge rates at saturation than the control cells. Outside of this frequency range the rate-intensity functions of control and exposed cells were similar to each other. 6. Recovery of function in the sound-damaged chick ear is accompanied by almost complete repair of the basilar papilla. The tectorial membrane, however, retains a major defect and only the lower layer of this membrane regenerates. An important observation in this presentation was the abnormal rate-intensity functions (in the 12-day recovered cells) reported for frequencies served by that region of the sensory epithelium where the tectorial membrane defect was found. This observation may be related to sustained structural damage to the short hair cell region of the papilla and/or alterations in the efferent control of papilla function mediated by the short hair cells.


1976 ◽  
Vol 39 (1) ◽  
pp. 179-194 ◽  
Author(s):  
R. Britt ◽  
A. Starr

Responses of 99 cochlear nucleus cells and 24 cochlear nerve fibers were studied with FM signals; 14 cochlear nerve fibers and 57 cochlear nucleus cells were studied at four rates of modulation and several signal intensities. Classification of FM response patterns as symmetrical, asymmetrical, or unidirectional was based on the calculation of a symmetry factor (S), which compared the number of discharges evoked by the ascending and by the descending phases of the FM sweep. Certain FM response patterns could not adequately be described by the symmetry factor along and variables of modulation rate and signal intensity had significant influence. A correspondence was found between the four response classes evoked by a steady-frequency tone burst (primarylike, buildup, onset, and pause) and the FM response pattern. Cochlear nerve fibers showed symmetrical response patterns to FM stimulation. Primarylike units were similar to eighth nerve fibers and generally showed symmetrical FM responses. Occasional eighth nerve fibers and primarylike cells developed asymmetry at the fastest rate of modulation (50 sps). Buildup units showed a variety of response patterns to FM signals. Onset units generally showed asymmetrical response patterns with the greater response occurring to the ascending than to the descending phase of the FM sweep. Pause units showed a characteristic inhibition of activity at 5 sps (rate-dependent inhibition). Of the 57 cochlear nuclear cells studied in response to FM signals, 16 were symmetrical, another 16 were symmetrical except at the fastest modulation rate, 12 were asymmetrical, 3 were unidirectional, and 10 showed complex responses to certain signal rates or intensities. It is clear the the cat cochlear with its complex cytoarchitecture is involved in the recoding of acoustic information. Some units in cochlear nucleus demonstrate differential responses to the direction and to the rate of frequency movement. Other cochlear nucleus cells respond as eighth nerve fibers and may serve as simple "relays" in transmitting information from the cochlea to higher auditory centers.


Sign in / Sign up

Export Citation Format

Share Document