temporal differences
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 84)

H-INDEX

36
(FIVE YEARS 4)

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 474
Author(s):  
Evgenia V. Dorokhova ◽  
Francisco J. Rodríguez-Tovar ◽  
Dmitry V. Dorokhov ◽  
Liubov A. Kuleshova ◽  
Anxo Mena ◽  
...  

Multidisciplinary studies have allowed us to describe the abiotic landscapes and, thus, reveal the ichnological and benthic foraminifera trends in a deep-water gateway. Mesoscale landscape mapping is presented based on the bathymetric position index, substrate types and near-bottom water temperature. Four sediment cores, retrieved from the entrance, centre and exit of the gap, were subject to computed tomography, ichnological and benthic foraminifera studies. A high diversity of abiotic landscapes in the relatively small area of Discovery Gap is detected and its landscape is characterized by 23 landscape types. The most heterogeneous abiotic factor is a topography that is associated with sediment patchiness and substrate variability. The ichnological and tomographical studies of the sediment cores demonstrate lateral and temporal differences in the macrobenthic tracemaker behaviour. The ichnofossils assemblage of the sediment core can be assigned to the Zoophycos ichnofacies with a higher presence of Zoophycos in the entrance site of the gap and during glacial intervals. Higher benthic foraminifera diversity and species richness during the Holocene are also registered in the southern part of the gap compared to the northern part. The spatial and temporal differences in macro-benthos behavior and benthic foraminifera distribution in the deep-water gateway are proposed to relate to the topographical variations of the Antarctic Bottom Water and its influence on the hydrodynamic regime, nutrient transport, etc.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2069-2069
Author(s):  
Brian Storrie ◽  
Irina D Pokrovskaya ◽  
Kelly Ball ◽  
Jeffrey A. Kamykowski ◽  
Sung W. Rhee

Abstract Vascular damage presents in many forms and varying geometries. Nevertheless, the platelet response to endothelial damage to the blood vessel wall, be it through a prick or a full puncture wound, is thought to be staged by a qualitatively similar temporal variance in signaling agonists. For example, endothelial damage in the microvasculature is thought to be initially dominated by thrombin and later by platelet released ADP and thromboxane. The same temporal sequence in signaling has been proposed to exist in a profusely bleeding puncture wound 1. If so, platelet morphology, a gold standard of platelet activation state, could provide a strong readout of temporally distinct signaling effects. Platelet morphology has long been considered to be a reliable indicator of a strong agonist such as thrombin acting through PAR receptors that produces a rounded, pseudopod extending, degranulated, highly adhesive platelet versus weaker agonists such as ADP or thromboxane acting through P2Y 12 receptors to produce a less adhesive, somewhat rounded platelet. A testable prediction of existing hemostasis models is that temporal staging of signaling leads to temporal differences in platelet morphology within the forming/remodeling thrombus. Such hypothesized temporal differences in signaling are clinically significant as they form the basis for hypothesizing phenotypically distinct outcomes for direct acting anti-coagulants (DOACs) affecting thrombin versus anti-platelet drugs affecting P2Y 12, ADP receptors. Advances in imaging, e.g., wide area transmission electron microscopy (WA-TEM), make possible the local determination of platelet activation state with high precision 2. Taking a mouse jugular vein puncture wound model 1,2, we found that all morphologically recognized platelet activation states were present early, 1 min post puncture, with loosely bound discoid shaped platelets being the most peripherally located. For bleeding, early-stage puncture wound, these loosely adherent, low activation state platelets were located on both intravascular and extravascular thrombus aggregates. Once the puncture wound is closed, loosely adherent platelets were only found on the intravascular surfaces of the thrombus. We propose that this result is most consistent with a platelet conversion model in which new loosely adherent platelets rapidly convert to tightly packed platelets. As the thrombus remodels, 5 and 20 min post-puncture, the thrombus continued to accumulate platelets both intravascularly and extravascularly. Peripheral, discoid shaped platelets provided a source for intravascular thrombus growth. However, any subsequent extravascular thrombus growth must be due to platelet migration. Significantly, we found that cangrelor, a direct acting P2Y 12 inhibitor, stalled thrombus formation/remodeling at an early stage (Figure 1A,C,E see also ref 1,2). By WA-TEM, the accumulation of discoid-shaped, loosely adherent platelets appeared to be enhanced in a cangrelor treated 5 min thrombus (Figure 1E,F). We suggest that P2Y 12 receptors must act early in thrombus formation with the conversion of discoid to more activated platelets being most affected. In contrast, a 5-min post puncture dabigatran (DOAC) treated showed deformed architecture with inhibition of the accumulation of discoid shaped platelets/rounded loosely adherent platelets being most affected (Figure 1D,F, see also ref 2). Accumulation of degranulated platelets appeared to be lessened in both cangrelor and dabigatran treated thrombi. We propose that the simplest explanation of these results is that multiple signaling pathways act in parallel with select activation states being more dependent on one pathway than another. Clinically, our results suggest that P2Y 12 inhibitors can affect thrombus formation at early time points in addition to the late time points projected by current models. 1. Tomaiuolo M., Matzko C.N., Posentud-Fuentes I., Weisel J.W., Brass L.F. & Stalker T.J. Interrelationships between structure and function during the hemostatic response to injury. Proc Natl Acad Sci USA. 116. 2243-2252 (2019). 2. Rhee, Pokrovskaya I.D.,BallK., LingK., VedanapartiY., CohenJ., CruzD., ZhaoO.S., AronovaM.A., ZhangG., Kamykowski J.A., LeapmanR.D., & StorrieB. Venous puncture wound hemostasis results in a vaulted thrombus structured by locally nucleated platelet aggregates. Commun. Biol., accepted. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Corinna Gebehart ◽  
Ansgar Büschges

Nervous systems face a torrent of sensory inputs, including proprioceptive feedback. Signal integration depends on spatially and temporally coinciding signals. It is unclear how relative time delays affect multimodal signal integration from spatially distant sense organs. We measured transmission times and latencies along all processing stages of sensorimotor pathways in the stick insect leg muscle control system using intra- and extracellular recordings. Transmission times of signals from load-sensing tibial and trochanterofemoral campaniform sensilla (tiCS, tr/fCS) to the premotor network were longer than from the movement-sensing femoral chordotonal organ (fCO). We characterized connectivity patterns from tiCS, tr/fCS, and fCO afferents to identified premotor nonspiking interneurons (NSIs) and motor neurons (MNs) by distinguishing short- and long-latency responses to sensory stimuli. Functional NSI connectivity depended on sensory context. The timeline of concurrent tiCS and fCO signals had an early phase of movement signal influences and delayed load influences. Temporal differences persisted into MN activity and muscle force development. We demonstrate a temporal difference in the processing of two distinct sensory modalities generated by the sensorimotor network and affecting motor output. The reported temporal differences in sensory processing and signal integration improve our understanding of sensory network computation and function in motor control.


Author(s):  
Han-Chun Huang ◽  
Tsung-Yu Lee ◽  
Cheng-Han Tsai ◽  
Yao-Sing Su ◽  
Yi-Rong Chen ◽  
...  

Circadian pattern influence on the incidence of out-of-hospital cardiac arrest (OHCA) has been demonstrated. However, the effect of temporal difference on the clinical outcomes of OHCA remains inconclusive. Therefore, we conducted a retrospective study in an urban city of Taiwan between January 2018 and December 2020 in order to investigate the relationship between temporal differences and the return of spontaneous circulation (ROSC), sustained (≥24 h) ROSC, and survival to discharge in patients with OHCA. Of the 842 patients with OHCA, 371 occurred in the daytime, 250 in the evening, and 221 at night. During nighttime, there was a decreased incidence of OHCA, but the outcomes of OHCA were significant poor compared to the incidents during the daytime and evening. After multivariate adjustment for influencing factors, OHCAs occurring at night were independently associated with lower probabilities of achieving sustained ROSC (aOR = 0.489, 95%CI: 0.285–0.840, p = 0.009) and survival to discharge (aOR = 0.147, 95%CI: 0.03–0.714, p = 0.017). Subgroup analyses revealed significant temporal differences in male patients, older adult patients, those with longer response times (≥5 min), and witnessed OHCA. The effects of temporal difference on the outcome of OHCA may be a result of physiological factors, underlying etiology of arrest, resuscitative efforts in prehospital and in-hospital stages, or a combination of factors.


2021 ◽  
Vol 53 ◽  
pp. 101087
Author(s):  
Jesús E. Rueda-Almazán ◽  
Víctor Manuel Hernández ◽  
Jorge René Alcalá-Martínez ◽  
Andrea Fernández-Duque ◽  
Mariana Ruiz-Aguilar ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Orlando Lam-Gordillo ◽  
Ryan Baring ◽  
Sabine Dittmann

Coastal ecosystems are vulnerable to anthropogenic disturbances which can cause loss of benthic macrofauna and their ecosystem functioning. Despite the importance of functional assessments for conservation and management, knowledge gaps persist on the generality of how the diversity and functional traits of benthic communities influence ecosystem functioning. We investigated eight sites in three different habitats across ~1,260 km of coastline, to evaluate patterns between taxonomic and functional diversity of benthic macrofauna, and the relationship between benthic macrofauna, functional traits and environmental conditions. A total of 74 benthic macrofauna taxa were identified. Significant differences across sites and season were found for metrics based on taxonomic and functional traits. Multivariate analysis revealed spatial-temporal differences, which were more evident based on taxa than functional traits. Functional diversity also showed spatial and temporal differences and was positively correlated with the number of taxa. The dominant functional traits modalities were deposit feeders, with large (>20 mm) body size, burrowers, bioirrigators, deeper than 3 cm in sediments, and irregular morphology. Novel Generalized Linear Latent Variable Models (GLLVM) uncovered several site-dependent relationships between taxa, traits and environmental conditions. Functional redundancy was lowest in a highly modified lagoon, and highest in a more pristine embayment. The outcomes from this study showed site-dependent patterns of benthic communities based on either taxonomic or functional metrics, highlighting that both perspectives are complementary to obtain a holistic understanding of the functioning in marine sediments under environmental change.


2021 ◽  
pp. 2150481
Author(s):  
Linjia Li ◽  
Yang Yang ◽  
Zhenzhou Yuan ◽  
Zhi Chen

Urban traffic control has become a big issue to help traffic management in recent years. With data explosion, Intelligent Transportation System (ITS) is developing rapidly. ITS is an advanced data-based method for traffic control, which requires timely and effective information supply. This research aims at providing real-time and accurate traffic flow data by intelligent prediction method. Applying multiple road traffic flow data of the Caltrans Performance Measurement System (PeMS) and separating the time series, the mechanism of spatial-temporal differences was taken into consideration. Based on the basic Long Short-Term Memory (LSTM) model, an improved LSTM model with Dropout and Bi-structure (Bi-LSTM) for traffic flow prediction was presented. In the prediction process, we applied three models including the improved Bi-LSTM model, Gated Recurrent Unit (GRU) model and Linear Regression in the experiment, and made a comparison from aspects of model structure complexity, operating efficiency and prediction accuracy. To validate the portability of the prediction model, the features of traffic flow from different datasets were further analyzed. The experimental results show that the improved Bi-LSTM model performs best in traffic flow prediction with comprehensive rationality, which reaches an accuracy of about 92% when considering temporal differences. Particularly, the specific factors of traffic situations and locations which is more applicable to be predicted by the improved Bi-LSTM model are summarized considering spatial differences. This research proposes an advanced and accurate model to provide real-time and short-term traffic flow prediction data, which is of great help to intelligent traffic control. Considering the mechanism between model and road traffic properties, the results suggest that it is more applicable in urban commercial area.


Sign in / Sign up

Export Citation Format

Share Document