Functional role of GABA in cat primary somatosensory cortex: shaping receptive fields of cortical neurons

1984 ◽  
Vol 52 (6) ◽  
pp. 1066-1093 ◽  
Author(s):  
R. W. Dykes ◽  
P. Landry ◽  
R. Metherate ◽  
T. P. Hicks

Extracellular recordings of 209 neurons were obtained with carbon fiber-containing multibarrel micropipettes. The cells were isolated in the primary somatosensory cortex of cats anesthetized with barbiturate and classified according to the nature of their response to natural stimuli, the nature of the surrounding multiunit responses to the same stimuli, the response to thalamic stimulation, and their depth in the cortex. To study factors controlling the excitability of somatosensory neurons, their receptive fields were examined in the presence of iontophoretically administered gamma-aminobutyric acid (GABA), glutamate, and bicuculline methiodide (BMI). Even when the neurons were depolarized to perithreshold levels with glutamate, or when local inhibitory influences mediated by GABA were antagonized by BMI, the apparent specificity for one class of afferent input was maintained. Neurons responding to stimulation of either cutaneous or deep receptors maintained their modality specificity, and neurons in cutaneous rapidly adapting regions never took on slowly adapting properties. When ejected at currents that did not elicit action potentials, glutamate lowered the threshold for activation by cutaneous stimuli but did not enlarge the receptive field. With larger ejecting currents, the neurons developed an on-going discharge, but even at these higher doses, glutamate did not produce an increase in the receptive-field size. Some neurons in regions of cortex exhibiting slowly adapting multiunit responses were relatively insensitive to glutamate. These cells required four to five times more glutamate to evoke discharges than did most neurons. Other cells, previously unresponsive to somatic stimuli, could be shown to possess distinct cutaneous receptive fields when either glutamate or BMI was ejected in their vicinity. Iontophoretically administered BMI altered the firing pattern of somatosensory neurons, causing them to discharge in bursts of 3-15 impulses. BMI enlarged the receptive-field size of neurons in regions displaying rapidly adapting multiunit background discharges but not in those regions with slowly adapting multiunit discharges. This differential effect of BMI, suggesting that GABA controls receptive-field size in rapidly adapting regions, also indicates that neurons in rapidly adapting regions differ pharmacologically from those in other submodality regions. In all cortical regions, BMI blocked the poststimulus inhibitory period that normally followed thalamic stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)

Author(s):  
W. Schellekens ◽  
M. Thio ◽  
S. Badde ◽  
J. Winawer ◽  
N. Ramsey ◽  
...  

AbstractSeveral neuroimaging studies have shown the somatotopy of body part representations in primary somatosensory cortex (S1), but the functional hierarchy of distinct subregions in human S1 has not been adequately addressed. The current study investigates the functional hierarchy of cyto-architectonically distinct regions, Brodmann areas BA3, BA1, and BA2, in human S1. During functional MRI experiments, we presented participants with vibrotactile stimulation of the fingertips at three different vibration frequencies. Using population Receptive Field (pRF) modeling of the fMRI BOLD activity, we identified the hand region in S1 and the somatotopy of the fingertips. For each voxel, the pRF center indicates the finger that most effectively drives the BOLD signal, and the pRF size measures the spatial somatic pooling of fingertips. We find a systematic relationship of pRF sizes from lower-order areas to higher-order areas. Specifically, we found that pRF sizes are smallest in BA3, increase slightly towards BA1, and are largest in BA2, paralleling the increase in visual receptive field size as one ascends the visual hierarchy. Additionally, we find that the time-to-peak of the hemodynamic response in BA3 is roughly 0.5 s earlier compared to BA1 and BA2, further supporting the notion of a functional hierarchy of subregions in S1. These results were obtained during stimulation of different mechanoreceptors, suggesting that different afferent fibers leading up to S1 feed into the same cortical hierarchy.


1988 ◽  
Vol 59 (4) ◽  
pp. 1231-1252 ◽  
Author(s):  
R. Metherate ◽  
N. Tremblay ◽  
R. W. Dykes

1. Two-hundred thirty-three single neurons were isolated and studied in somatosensory cortex of cats anesthetized with pentobarbital sodium or urethane. Two-hundred and three were studied during iontophoretic administration of acetylcholine (ACh), 173 during administration of glutamate, and 24 during administration of atropine. 2. Fifty-six percent of the 218 neurons tested responded to somatic stimuli. Another 21% did so during glutamate administration. In 11 cases ACh iontophoresis uncovered a receptive field in a previously unresponsive cell. 3. Forty-six percent of the 160 cells tested responded to thalamic stimulation. Another 17% did so in the presence of glutamate, but 19 cells responded to neither cutaneous nor thalamic stimuli. 4. Sixteen percent of the 203 cells tested were overtly excited by ACh and the responses to somatic stimulation of 29% were modulated by administration of ACh. Cells displaying overt excitation and/or modulation of responses were said to be cholinoceptive and made up 39% of the sample. These cells were located in all cortical layers. 5. Cholinoceptive neurons were more likely than noncholinoceptive cells to be driven by thalamic stimulation. 6. The changes observed during ACh administration tended to be facilitatory: an enhanced responsiveness to somatic stimuli, an increased firing rate, or an increased receptive-field size. However, in 10 of the 203 cases tested one or more of these variables decreased. 7. The enhanced responsiveness during ACh administration was a robust phenomenon; responses were often increased by as much as 200% and the discharge pattern was altered so that bursts of impulses following stimulation were more common. 8. ACh tended to enhance one attribute of a cell selectively rather than to act as a general excitant. 9. ACh is a powerful neuromodulatory agent in somatosensory cortex that, when released in specific behavioral states, should enhance the responsiveness of cortical neurons.


1992 ◽  
Vol 67 (5) ◽  
pp. 1031-1056 ◽  
Author(s):  
G. H. Recanzone ◽  
M. M. Merzenich ◽  
W. M. Jenkins ◽  
K. A. Grajski ◽  
H. R. Dinse

1. Adult owl monkeys were trained to detect differences in the frequency of a tactile flutter-vibration stimulus above a 20-Hz standard. All stimuli were delivered to a constant skin site restricted to a small part of a segment of one finger. The frequency-difference discrimination performance of all but one of these monkeys improved progressively with training. 2. The distributed responses of cortical neurons ("maps") of the hand surfaces were defined in detail in somatosensory cortical area 3b. Representations of trained hands were compared with those of the opposite, untrained hand, and to the area 3b representations of hands in a second set of monkeys that were stimulated tactually in the same manner while these monkeys were attending to auditory stimuli (passive stimulation controls). 3. The cortical representations of the trained hands were substantially more complex in topographic detail than the representations of unstimulated hands or of passively stimulated control hands. 4. In all well-trained monkeys the representations of the restricted skin location trained in the behavioral task were significantly (1.5 to greater than 3 times) greater in area than were the representations of equivalent skin locations on control digits. However, the overall extents of the representations of behaviorally stimulated fingers were not larger than those of control fingers in the same hemisphere, or in opposite hemisphere controls. 5. The receptive fields representing the trained skin were significantly larger than receptive fields representing control digits in all but one trained monkey. The largest receptive fields were centered in the zone of representation of the behaviorally engaged skin, but they were not limited to it. Large receptive fields were recorded in a 1- to 2-mm-wide zone in the area 3b maps of trained hands. 6. Receptive-field sizes were also statistically significantly larger on at least one adjacent, untrained digit when compared with the receptive fields recorded on the homologous digit of the opposite hand. 7. There was an increase in the percent overlaps of receptive fields in the cortical zone of representation of the trained skin. A significant number of receptive fields were centered on the behaviorally trained skin site. 8. The effects of increased topographic complexity, increased representation of the trained skin location, increased receptive-field size, and increased receptive-field overlap were not observed in the representations of the untrained hands in these same monkeys. Only modest increases in topographic complexity were recorded in the representations of passively stimulated hands, and no effects on receptive-field size or overlap were noted.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Author(s):  
W. Schellekens ◽  
M. Thio ◽  
S. Badde ◽  
J. Winawer ◽  
N. Ramsey ◽  
...  

AbstractSeveral neuroimaging studies have shown the somatotopy of body part representations in primary somatosensory cortex (S1), but the functional hierarchy of distinct subregions in human S1 has not been adequately addressed. The current study investigates the functional hierarchy of cyto-architectonically distinct regions, Brodmann areas BA3, BA1, and BA2, in human S1. During functional MRI experiments, we presented participants with vibrotactile stimulation of the fingertips at 3 different vibration frequencies. Using population Receptive Field (pRF) modeling of the fMRI BOLD activity, we identified the hand region in S1 and the somatotopy of the fingertips. For each voxel, the pRF center indicates the finger that most effectively drives the BOLD signal, and the pRF size measures the spatial somatic pooling of fingertips. We find a systematic relationship of pRF sizes from lower-order areas to higher-order areas. Specifically, we found that pRF sizes are smallest in BA3, increase slightly towards BA1, and are largest in BA2, paralleling the increase in visual receptive field size as one ascends the visual hierarchy. Additionally, we find that the time-to-peak of the hemodynamic response in BA3 is roughly 0.5s earlier compared to BA1 and BA2, further supporting the notion of a functional hierarchy of subregions in S1. These results were obtained during stimulation of different mechanoreceptors, suggesting that different afferent fibers leading up to S1 feed into the same cortical hierarchy.


1998 ◽  
Vol 80 (6) ◽  
pp. 2882-2892 ◽  
Author(s):  
Christopher I. Moore ◽  
Sacha B. Nelson

Moore, Christopher I. and Sacha B. Nelson. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80: 2882–2892, 1998. Whole cell recordings of synaptic responses evoked by deflection of individual vibrissa were obtained from neurons within adult rat primary somatosensory cortex. To define the spatial and temporal properties of subthreshold receptive fields, the spread, amplitude, latency to onset, rise time to half peak amplitude, and the balance of excitation and inhibition of subthreshold input were quantified. The convergence of information onto single neurons was found to be extensive: inputs were consistently evoked by vibrissa one- and two-away from the vibrissa that evoked the largest response (the “primary vibrissa”). Latency to onset, rise time, and the incidence and strength of inhibitory postsynaptic potentials (IPSPs) varied as a function of position within the receptive field and the strength of evoked excitatory input. Nonprimary vibrissae evoked smaller amplitude subthreshold responses [primary vibrissa, 9.1 ± 0.84 (SE) mV, n = 14; 1-away, 5.1 ± 0.5 mV, n = 38; 2-away, 3.7 ± 0.59 mV, n = 22; 3-away, 1.3 ± 0.70 mV, n = 8] with longer latencies (primary vibrissa, 10.8 ± 0.80 ms; 1-away, 15.0 ± 1.2 ms; 2-away, 15.7 ± 2.0 ms). Rise times were significantly faster for inputs that could evoke action potential responses (suprathreshold, 4.1 ± 1.3 ms, n = 8; subthreshold, 12.4 ± 1.5 ms, n = 61). In a subset of cells, sensory evoked IPSPs were examined by deflecting vibrissa during injection of hyperpolarizing and depolarizing current. The strongest IPSPs were evoked by the primary vibrissa ( n = 5/5), but smaller IPSPs also were evoked by nonprimary vibrissae ( n = 8/13). Inhibition peaked by 10–20 ms after the onset of the fastest excitatory input to the cortex. This pattern of inhibitory activity led to a functional reversal of the center of the receptive field and to suppression of later-arriving and slower-rising nonprimary inputs. Together, these data demonstrate that subthreshold receptive fields are on average large, and the spatio-temporal dynamics of these receptive fields vary as a function of position within the receptive field and strength of excitatory input. These findings constrain models of suprathreshold receptive field generation, multivibrissa interactions, and cortical plasticity.


2005 ◽  
Vol 93 (6) ◽  
pp. 3537-3547 ◽  
Author(s):  
Chong Weng ◽  
Chun-I Yeh ◽  
Carl R. Stoelzel ◽  
Jose-Manuel Alonso

Each point in visual space is encoded at the level of the thalamus by a group of neighboring cells with overlapping receptive fields. Here we show that the receptive fields of these cells differ in size and response latency but not at random. We have found that in the cat lateral geniculate nucleus (LGN) the receptive field size and response latency of neighboring neurons are significantly correlated: the larger the receptive field, the faster the response to visual stimuli. This correlation is widespread in LGN. It is found in groups of cells belonging to the same type (e.g., Y cells), and of different types (i.e., X and Y), within a specific layer or across different layers. These results indicate that the inputs from the multiple geniculate afferents that converge onto a cortical cell (approximately 30) are likely to arrive in a sequence determined by the receptive field size of the geniculate afferents. Recent studies have shown that the peak of the spatial frequency tuning of a cortical cell shifts toward higher frequencies as the response progresses in time. Our results are consistent with the idea that these shifts in spatial frequency tuning arise from differences in the response time course of the thalamic inputs.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


1988 ◽  
Vol 59 (4) ◽  
pp. 1253-1276 ◽  
Author(s):  
R. Metherate ◽  
N. Tremblay ◽  
R. W. Dykes

1. Two-hundred and seven neurons were examined for changes in their responsiveness during the iontophoretic administration of acetylcholine (ACh) in barbiturate-anesthetized cats. 2. The laminar locations of 78 cells were determined. Cholinoceptive neurons were found in all cortical layers and ranged from 50% of the cells tested in layer I to 78% in layer VI. 3. When the responsiveness of a neuron was measured by the magnitude of the discharge generated by a fixed dose of glutamate, 30 of 47 cases (64%) were potentiated, and 4 (8%) were depressed when ACh was administered during glutamate-induced excitation. 4. ACh administered during glutamate excitation was significantly more effective in altering neuronal responsiveness than was ACh administered alone (P less than 0.001). 5. When the responsiveness of a neuron was measured by the magnitude of the discharge generated by a standard somatic stimulus applied to the receptive field, 42 of 52 cases (81%) were potentiated during ACh application. This was again different from ACh treatment alone where only 4 of 27 tests (15%) resulted in subsequent enhancement of the response to somatic stimuli. 6. ACh generally increased the responsiveness of neurons with peripheral receptive fields and caused the appearance of a receptive field in some cells lacking one. 7. In many cases the changes in excitability, as measured by responses either to glutamate or to somatic stimulation, remained for prolonged time periods. When glutamate was used to test excitability, 34% (16 of 47) of the enhancements lasted more than 5 min. When somatic stimuli were used 29% (15 of 52) lasted more than 5 min. With both measures some neurons still displayed enhanced responses more than 1 h after the treatment with ACh. 8. ACh appears to act as a permissive agent that allows modification of the effectiveness with which previously existing afferent inputs drive somatosensory cortical neurons. 9. This mechanism to alter neuronal responsiveness has many of the characteristics necessary to account for the reorganization observed in somatosensory cortex following alterations in its afferent drive and may be related to some forms of learning and memory.


Sign in / Sign up

Export Citation Format

Share Document