Discharge patterns and recruitment order of identified motoneurons and internuclear neurons in the monkey abducens nucleus

1988 ◽  
Vol 60 (6) ◽  
pp. 1874-1895 ◽  
Author(s):  
A. F. Fuchs ◽  
C. A. Scudder ◽  
C. R. Kaneko

1. Single neurons in the abducens nucleus were recorded extracellularly in alert rhesus macaques trained to make a variety of eye movements. An abducens neurons was identified as a motoneuron (MN) if its action potentials triggered an averaged EMG potential in the lateral rectus muscle. Abducens internuclear neurons (INNs) that project to the oculomotor nucleus were identified by collision block of spontaneous with antidromic action potentials evoked with a stimulating electrode placed in the medial rectus subdivision of the contralateral oculomotor nucleus. 2. All abducens MNs and INNs had qualitatively similar discharge patterns consisting of a burst of spikes for lateral saccades and a steady firing whose rate increased with lateral eye position in excess of a certain threshold. 3. For both MNs and INNs the firing rates associated with different, constant eye positions could be described accurately by a straight line with slope, K (the eye position sensitivity in spikes.s-1.deg-1), and intercept, T (the eye position threshold for steady firing). For different MNs, K increased as T varied from more medial to more lateral values. In contrast, the majority of INNs already were active for values of T more medial than 20 degrees and showed little evidence of recruitment according to K. 4. During horizontal sinusoidal smooth-pursuit eye movements, both MNs and INNs exhibited a sinusoidal modulation in firing rate whose peak preceded eye position. From these firing rate patterns, the component of firing rate related to eye velocity, R (the eye velocity sensitivity in spikes.s-1.deg-1.s-1), was determined. The R for INNs was, on average, 78% larger than that for MNs. Furthermore, R increased with T for MNs, whereas INNs showed no evidence of recruitment according to R. If, as in the cat, the INNs of monkeys provide the major input to medial rectus MNs and if simian medial rectus MNs behave like our abducens MNs, then recruitment order, which is absent in INNs, must be established at the MN pool itself. 5. Unexpectedly, the R of MNs decreased with the frequency of the smooth-pursuit movement. Furthermore, the eye position sensitivity, K, obtained during steady fixations was usually less than that determined during smooth pursuit. Therefore, conclusions about the roles of MNs and premotor neurons based on how their R and K values differ must be viewed with caution if the data have been obtained under different tracking conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

1992 ◽  
Vol 67 (4) ◽  
pp. 944-960 ◽  
Author(s):  
Y. Zhang ◽  
L. E. Mays ◽  
P. D. Gamlin

1. Previous work has shown neurons just dorsal and lateral to the oculomotor nucleus that increase their firing rate with increases in the angle of ocular convergence. It has been suggested that the output of these midbrain near response cells might provide the vergence command needed by the medial rectus motoneurons. However, lens accommodation ordinarily accompanies convergence, and a subsequent study showed that only about one-half of these midbrain near response cells carried a signal related exclusively to vergence. One hypothesis suggested by this finding is that this subgroup of neurons might have a unique role in providing a "pure" vergence signal to the medial rectus motoneurons. 2. In the present study extracellular recordings were made from midbrain near response cells in monkeys while eye position and lens accommodation were measured. The monkeys viewed targets through an optical system that allowed the accommodative and ocular vergence demands to be manipulated independently. This approach was used to produce a partial dissociation of accommodative and vergence responses, so that an accommodative and vergence coefficient could be determined for each cell, by the use of the following equation FR = R0 + kda x AR + kdv x CR where FR is the firing rate of the near response cell, R0 is the predicted firing rate for a distant target, kda is the (dissociated) accommodation coefficient, AR is the accommodative response, kdv is the (dissociated) vergence coefficient, and CR is the convergence response. 3. The vergence and accommodation coefficients were determined for a large number of midbrain near response cells, including a subset that could be antidromically activated from the medial rectus subdivisions of the oculomotor nucleus. Some near response neurons were found with signals related exclusively to convergence (i.e., kdv greater than 0 and kda = 0), whereas several others had signals related exclusively to lens accommodation (i.e., kda greater than 0 and kdv = 0). The majority of the near response cells had signals related to both responses (i.e., kda not equal to 0 and kdv not equal to 0). Furthermore, the vergence and accommodation coefficients of near response cells appeared to be continuously distributed. Some cells had negative accommodation or vergence coefficients. 4. The 17 near response cells that could be antidromically activated from the oculomotor nucleus presumably provide vergence signals to the medial rectus motoneurons. Although all had positive vergence coefficients, only four of these cells carried signals that were related exclusively to vergence.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 67 (1) ◽  
pp. 64-74 ◽  
Author(s):  
P. D. Gamlin ◽  
L. E. Mays

1. An early study by Keller reported that medial rectus motoneurons display a step change in firing rate during accommodative vergence movements. However, a later study by Mays and Porter reported gradual changes in firing rate during symmetrical vergence movements. Furthermore, subsequent inspection of the activity of individual medial rectus motoneurons during vergence movements indicated transient changes in their firing rate that had not been noted by Mays and Porter. For conjugate eye movements, in addition to a position signal, motoneurons display an eye velocity signal that compensates for the characteristics of the oculomotor plant. This suggested that the transient change in firing rate seen during vergence movements represented a velocity signal. Therefore the present study used single-unit recording techniques in alert rhesus monkeys to examine the dynamic behavior of medial rectus motoneurons during vergence eye movements. 2. The relationship between firing rate and eye velocity was first studied for vergence responses to step changes in binocular disparity and accommodative demand. Inspection of single trials showed that medial rectus motoneurons display transient changes in firing rate during vergence eye movements. To better visualize the dynamic signal during vergence movements, an expected firing rate (eye position multiplied by position sensitivity of the cell plus its baseline firing rate) was subtracted from the actual firing rate to yield a difference firing rate, which was displayed along with the eye velocity trace for individual trials. During all smooth symmetrical vergence movements, the profile of the difference firing rate very closely resembled the velocity profile. 3. To quantify the relationship between eye velocity and firing rate, two approaches were taken. In one, peak eye velocity was plotted against the difference firing rate. This plot yielded a measure of the velocity sensitivity of the cell (prv). In the other, a scatter plot was produced in which horizontal eye velocity throughout the vergence eye movement was plotted against the difference firing rate. This plot yielded a second measure of the velocity sensitivity of the cell (rv). 4. The behavior of 10 cells was studied during both sinusoidal vergence tracking and conjugate smooth pursuit over a range of frequencies from 0.125 to 1.0 Hz. This enabled the frequency sensitivity of the medial rectus motoneurons to be assessed for both types of movements. Both vergence velocity sensitivity and smooth pursuit velocity sensitivity decreased with increasing frequency. This is similar to a finding by Fuchs and co-workers for lateral rectus motoneurons during smooth pursuit eye movements.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 73 (4) ◽  
pp. 1383-1395 ◽  
Author(s):  
J. S. Stahl ◽  
J. I. Simpson

1. We recorded abducens neurons, identified by electrical stimulation as internuclear neurons or motoneurons, in awake rabbits. The relationship of firing rate to eye movement was determined from responses during stable fixations, sinusoidal rotation in the light (0.05-0.8 Hz), and triangular optokinetic stimulation at 0.1 Hz. 2. All abducens neurons were excited during temporal movement of the ipsilateral eye. Temporal and nasal saccades were associated with bursts or pauses, respectively, in the firing rate. 3. Motoneurons and internuclear neurons are qualitatively indistinguishable. There was no significant quantitative difference between the phase and sensitivity of the two groups for 0.2-Hz sinusoidal rotation in the light. 4. On the basis of the response to stable eye positions, we determined static eye position sensitivity of the abducens neuron pool to be 8.2 +/- 2.5 (SD) spikes.s-1/0, with a static hysteresis of 8.9 spikes/s (1.14 +/- 0.37 degrees). 5. We determined apparent eye position sensitivity (k) and apparent eye velocity sensitivity (r) from the responses to sinusoidal rotation in the light. k increases and r decreases with stimulus frequency, which indicates that the simplest transfer function mediating conversion of abducens nucleus (VI) firing rate to eye position (E) has two poles and one zero. 6. The VI-->E relationship has an "amplitude nonlinearity," manifest as a tendency for k, r, and firing rate phase lead to decrease as eye movement amplitude increases at a fixed frequency. On a percentage basis, phase is less affected than are the sensitivities. The nonlinearity becomes less pronounced for stimulus amplitudes > 2.5 degrees, and consequently a linear model of the VI-->E transformation remains useful, provided that consideration is restricted to the appropriate range of stimulus/response amplitudes. 7. We determined time constants of the linear two-pole, one-zero transfer function from the variation of r/k versus stimulus frequency. The pole time constants were T1 = 3.4 s and T2 = 0.28 s, and the zero time constant (Tz) = 1.6 s. The magnitude of Tz was corroborated by measuring the time constant of the exponential decay in firing rate after step changes in eye position. This transient method yielded a Tz of 1.1 s. 8. The time constants of the VI-->E transfer function are roughly 10 times larger than those reported for the rhesus macaque. The difference is attributable to the reported 10-fold lower stiffness of the rabbit oculomotor plant, which may in turn relate to rabbits postulated lower degree of activation of extraocular muscles at any given position.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 70 (2) ◽  
pp. 844-856 ◽  
Author(s):  
K. E. Cullen ◽  
C. Chen-Huang ◽  
R. A. McCrea

1. The single-unit activity of neurons in the vestibular nucleus, the prepositus nucleus, and the abducens nucleus, whose activity was primarily related to horizontal eye movements, was recorded in alert squirrel monkeys that were trained to track a small visual target by generating smooth pursuit eye movements and to cancel their horizontal vestibuloocular reflex (VOR) by fixating a head stationary target. 2. The spiking behavior of each cell was recorded during 1) spontaneous eye movements, 2) horizontal smooth pursuit of a target that was moved sinusoidally +/- 20 degrees/s at 0.5 Hz, 3) horizontal VOR evoked by 0.5-Hz sinusoidal turntable rotations +/- 40 degrees/s (VORs), and 4) voluntary cancellation of the VOR by fixation of a head-stationary target during 0.5-Hz sinusoidal turntable rotation at +/- 40 degrees/s (VORCs). The responses of most (28/42) of the units were recorded during unpredictable 100-ms steps in head acceleration (400 degrees/s2) that were generated while the monkey was fixating a target light. The acceleration steps were generated either when the monkey was stationary or when the turntable was already rotating (VORt trials), and the monkey was canceling its VOR (VORCt trials). 3. The firing behavior of all 12 of the abducens neurons recorded was closely related to horizontal eye position and eye velocity during all of the behavioral paradigms used, although there was a small but significant increase in the eye position sensitivity of many of these units when the eye was moving (smooth pursuit) versus when the eye was stationary (fixation). 4. Many neurons in the prepositus nucleus and the medial vestibular nucleus (n = 15) were similar to abducens neurons, in that their firing rate was related primarily to horizontal eye position and eye velocity, regardless of the behavioral paradigm used. These cells were, on average, more sensitive to eye position and smooth pursuit eye velocity than were abducens neurons. 5. The firing rate of 15 other neurons in the prepositus and medial vestibular nucleus was related primarily to horizontal smooth pursuit eye movements. The tonic firing rate of all of these smooth pursuit (SP) cells was related to horizontal eye position, and the majority generated bursts of spikes during saccades in all directions but their off direction. Six of the SP neurons fired in phase with ipsilateral eye movements, whereas the remaining nine were sensitive to eye movements in the opposite direction.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 80 (6) ◽  
pp. 3100-3111 ◽  
Author(s):  
Y. Dalezios ◽  
C. A. Scudder ◽  
S. M. Highstein ◽  
A. K. Moschovakis

Dalezios, Y., C. A. Scudder, S. M. Highstein, and A. K. Moschovakis. Anatomy and physiology of the primate interstitial nucleus of Cajal. II. Discharge pattern of single efferent fibers. J. Neurophysiol. 80: 3100–3111, 1998. Single efferent fibers of the interstitial nucleus of Cajal (NIC) were characterized physiologically and injected with biocytin in alert behaving monkeys. Quantitative analysis demonstrated that their discharge encodes a constellation of oculomotor variables. Tonic and phasic signals were related to vertical (up or down) eye position and saccades, respectively. Depending on how they encoded eye position, saccade velocity, saccade size, saccade duration, and smooth-pursuit eye velocity, fibers were characterized as regular or irregular, bi- or unidirectionally modulated, more or less sensitive, and reliable or unreliable. Further, fibers that did not burst for saccades (tonic) and fibers the eye-position and saccade-related signals of which increased in the same (in-phase) or in the opposite (anti-phase) directions were encountered. A continuum of discharge properties was the rule. We conclude that NIC efferent fibers send a combination of eye-position, saccade-, and smooth-pursuit-related signals, mixed in proportions that differ for different fibers, to targets of the vertical neural integrator such as extraocular motoneurons.


1993 ◽  
Vol 69 (2) ◽  
pp. 642-645 ◽  
Author(s):  
Y. Zhang ◽  
A. M. Partsalis ◽  
S. M. Highstein

1. Properties of superior vestibular nucleus (SVN) neurons and their projection to the cerebellar flocculus were studied in alert squirrel monkeys by using chronic unit and eye movement recording and microstimulation techniques. Twenty-three cells were antidromically activated from the ipsilateral flocculus, and seventeen of these were also orthodromically activated from the ipsilateral VIIth nerve at monosynaptic latencies. Only 1 of these 23 units was also inhibited by flocculus stimulation. According to their response properties, 9 of the cells were pure vestibular, 2 were vestibular-pause, and 12 were position-vestibular cells. The mean eye position sensitivity of these position-vestibular cells was significantly lower than that of cells projecting to the oculomotor nucleus (OMN). No eye movement-only neurons were antidromically activated from the flocculus. No cells could be antidromically activated from both the oculomotor nucleus and the flocculus.


1998 ◽  
Vol 80 (1) ◽  
pp. 28-47 ◽  
Author(s):  
Masaki Tanaka ◽  
Kikuro Fukushima

Tanaka, Masaki and Kikuro Fukushima. Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys. J. Neurophysiol. 80: 28–47, 1998. To examine how the periarcuate area is involved in the control of smooth pursuit eye movements, we recorded 177 single neurons while monkeys pursued a moving target in the dark. The majority (52%, 92/177) of task-related neurons responded to pursuit but had little or no response to saccades. Histological reconstructions showed that these neurons were located mainly in the posterior bank of the arcuate sulcus near the sulcal spur. Twenty-seven percent (48/177) changed their activity at the onset of saccades. Of these, 36 (75%) showed presaccadic burst activity with strong preference for contraversive saccades. Eighteen (10%, 18/177) were classified as eye-position–related neurons, and 11% (19/177) were related to other aspects of the stimuli or response. Among the 92 neurons that responded to pursuit, 85 (92%) were strongly directional with uniformly distributed preferred directions. Further analyses were performed in these directionally sensitive pursuit-related neurons. For 59 neurons that showed distinct changes in activity around the initiation of pursuit, the median latency from target motion was 96 ms and that preceding pursuit was −12 ms, indicating that these neuron can influence the initiation of pursuit. We tested some neurons by briefly extinguishing the tracking target ( n = 39) or controlling its movement with the eye position signal ( n = 24). The distribution of the change in pursuit-related activity was similar to previous data for the dorsomedial part of the medial superior temporal neurons ( Newsome et al. 1988) , indicating that pursuit-related neurons in the periarcuate area also carry extraretinal signals. For 22 neurons, we examined the responses when the animals reversed pursuit direction to distinguish the effects of eye acceleration in the preferred direction from oppositely directed eye velocity. Almost all neurons discharged before eye velocity reached zero, however, only nine neurons discharged before the eyes were accelerated in the preferred direction. The delay in neuronal responses relative to the onset of eye acceleration in these trials might be caused by suppression from oppositely directed pursuit velocity. The results suggest that the periarcuate neurons do not participate in the earliest stage of eye acceleration during the change in pursuit direction, although most of them may participate in the early stages of pursuit initiation in the ordinary step-ramp pursuit trials. Some neurons changed their activity when the animals fixated a stationary target, and this activity could be distinguished easily from the strong pursuit-related responses. Our results suggest that the periarcuate pursuit area carries extraretinal signals and affects the premotor circuitry for smooth pursuit.


1999 ◽  
Vol 82 (5) ◽  
pp. 2612-2632 ◽  
Author(s):  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

The mechanics of the eyeball and its surrounding tissues, which together form the oculomotor plant, have been shown to be the same for smooth pursuit and saccadic eye movements. Hence it was postulated that similar signals would be carried by motoneurons during slow and rapid eye movements. In the present study, we directly addressed this proposal by determining which eye movement–based models best describe the discharge dynamics of primate abducens neurons during a variety of eye movement behaviors. We first characterized abducens neuron spike trains, as has been classically done, during fixation and sinusoidal smooth pursuit. We then systematically analyzed the discharge dynamics of abducens neurons during and following saccades, during step-ramp pursuit and during high velocity slow-phase vestibular nystagmus. We found that the commonly utilized first-order description of abducens neuron firing rates (FR = b + kE + rE˙, where FR is firing rate, E and E˙ are eye position and velocity, respectively, and b, k, and r are constants) provided an adequate model of neuronal activity during saccades, smooth pursuit, and slow phase vestibular nystagmus. However, the use of a second-order model, which included an exponentially decaying term or “slide” (FR = b + kE + rE˙ + uË − c[Formula: see text]), notably improved our ability to describe neuronal activity when the eye was moving and also enabled us to model abducens neuron discharges during the postsaccadic interval. We also found that, for a given model, a single set of parameters could not be used to describe neuronal firing rates during both slow and rapid eye movements. Specifically, the eye velocity and position coefficients ( r and k in the above models, respectively) consistently decreased as a function of the mean (and peak) eye velocity that was generated. In contrast, the bias ( b, firing rate when looking straight ahead) invariably increased with eye velocity. Although these trends are likely to reflect, in part, nonlinearities that are intrinsic to the extraocular muscles, we propose that these results can also be explained by considering the time-varying resistance to movement that is generated by the antagonist muscle. We conclude that to create realistic and meaningful models of the neural control of horizontal eye movements, it is essential to consider the activation of the antagonist, as well as agonist motoneuron pools.


1992 ◽  
Vol 68 (1) ◽  
pp. 319-332 ◽  
Author(s):  
J. L. McFarland ◽  
A. F. Fuchs

1. Monkeys were trained to perform a variety of horizontal eye tracking tasks designed to reveal possible eye movement and vestibular sensitivities of neurons in the medulla. To test eye movement sensitivity, we required stationary monkeys to track a small spot that moved horizontally. To test vestibular sensitivity, we rotated the monkeys about a vertical axis and required them to fixate a target rotating with them to suppress the vestibuloocular reflex (VOR). 2. All of the 100 units described in our study were recorded from regions of the medulla that were prominently labeled after injections of horseradish peroxidase into the abducens nucleus. These regions include the nucleus prepositus hypoglossi (NPH), the medial vestibular nucleus (MVN), and their common border (the “marginal zone”). We report here the activities of three different types of neurons recorded in these regions. 3. Two types responded only during eye movements per se. Their firing rates increased with eye position; 86% had ipsilateral “on” directions. Almost three quarters (73%) of these medullary neurons exhibited a burst-tonic discharge pattern that is qualitatively similar to that of abducens motoneurons. There were, however, quantitative differences in that these medullary burst-position neurons were less sensitive to eye position than were abducens motoneurons and often did not pause completely for saccades in the off direction. The burst of medullary burst position neurons preceded the saccade by an average of 7.6 +/- 1.7 (SD) ms and, on average, lasted the duration of the saccade. The number of spikes in the burst was well correlated with saccade size. The second type of eye movement neuron displayed either no discernible burst or an inconsistent one for on-direction saccades and will be referred to as medullary position neurons. Neither the burst-position nor the position neurons responded when the animals suppressed the VOR; hence, they displayed no vestibular sensitivity. 4. The third type of neuron was sensitive to both eye movement and vestibular stimulation. These neurons increased their firing rates during horizontal head rotation and smooth pursuit eye movements in the same direction; most (76%) preferred ipsilateral head and eye movements. Their firing rates were approximately in phase with eye velocity during sinusoidal smooth pursuit and with head velocity during VOR suppression; on average, their eye velocity sensitivity was 50% greater than their vestibular sensitivity. Sixty percent of these eye/head velocity cells were also sensitive to eye position. 5. The NPH/MVN region contains many neurons that could provide an eye position signal to abducens neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 63 (3) ◽  
pp. 502-522 ◽  
Author(s):  
R. Lal ◽  
M. J. Friedlander

1. Extracellular recordings were made from single neurons in layer A of the left dorsal lateral geniculate nucleus (LGNd) of anesthetized and paralyzed adult cats. Responses to retinotopically identical visual stimuli (presented through the right eye) were recorded at several positions of the left eye in its orbit. Visual stimuli consisted of drifting sinusoidal gratings of optimal temporal and spatial frequencies at twice threshold contrast. Visual stimulation of the left eye was blocked by a variety of methods, including intravitreal injection of tetrodotoxin (TTX). The change in position of the left eye was achieved by passive movements in a randomized and interleaved fashion. Of 237 neurons studied, responses were obtained from 143 neurons on 20-100 trials of identical visual stimulation at each of six eye positions. Neurons were classified as X- or Y- on the basis of a standard battery of physiological tests (primarily linearity of spatial summation and response latency to electrical stimulation of the optic chiasm). 2. The effect of eye position on the visual response of the 143 neurons was analyzed with respect to the number of action potentials elicited and the peak firing rate. Fifty-seven (40%) neurons had a significant effect [by one-factor repeated-measure analysis of variance (ANOVA), P less than 0.05] of eye position on the visual response by either criterion (number of action potentials or peak firing rate). Of these 57 neurons, 47 had a significant effect (P less than 0.05) with respect to the number of action potentials and 23 had a significant effect (P less than 0.05) by both criteria. Thus the permissive measure by either criterion and the conservative measure by both criteria resulted in 40% and 16%, respectively, of all neurons' visual responses being significantly affected by eye position. 3. For the 47 neurons with a significant effect of eye position (number of action potentials criterion), a trend analysis of eye position versus visual response showed a linear trend (P less than 0.05) for 9 neurons, a quadratic trend (P less than 0.05) for 32 neurons, and no significant trend for the 6 remaining neurons. The trends were approximated with linear and nonlinear gain fields (range of eye position change over which the visual response was modulated). The gain fields of individual neurons were compared by measuring the normalized gain (change in neuronal response per degree change of eye position). The mean normalized gain for the 47 neurons was 4.3. 4. The nonlinear gain fields were generally symmetric with respect to nasal versus temporal changes in eye position.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document