distant target
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Victoria Tanna ◽  
Carolyn MacCann

The Extended Process Model of Emotion Regulation outlines the processes people use to influence the timing and type of emotions they have. The current study applies this model to extrinsic regulation (regulating others’ emotions). In a 2x2 between-subject design, we examine how the target person’s emotion (anger/anxiety), and target/regulator closeness (close/distant) interact to predict the regulator’s intention to regulate, regulation process choice, evaluation of regulation success (regulation self-efficacy), and empathy toward the target. Participants (N = 266) were randomly allocated to one of four conditions to read three vignettes where a close/distant target expressed anger/anxiety. Compared to distant targets, close targets elicited significantly greater intention to regulate, social sharing (but not humor, reappraisal, or distancing), self-efficacy of implementation and empathy. There was no support for emotion type or emotion-by-closeness hypotheses. We conclude that closeness but not emotion type affects emotion regulation at all three stages of the Extended Process Model of Emotion Regulation. Future research could include the effect of closeness on additional processes (such as direct situation modification, or giving space).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kyung-Sun Na ◽  
Chang Su Lee ◽  
Da Ran Kim ◽  
Seok Ho Song ◽  
Soo Yeon Cho ◽  
...  

Abstract Background A polarization-directed flat (PDF) lens acts as a converging lens with a focal length (f) > 0 and a diverging lens with f < 0, depending on the polarization state of the incidental light. To produce a multifocal lens with two focal lengths, a PDF and a converging lens having shorter focal length were combined. In this study, we tested a bifocal PDF to determine its potential as a new multifocal intraocular lens (IOL). Methods Constructed a multifocal lens with a PDF lens (f = +/− 100 mm) and a converging lens (f = + 25 mm). In an optical bench test, we measured the defocus curve to test the multifocal function. The multifocal function and optical quality of the lens in various situations were tested. An Early Treatment Diabetic Retinopathy Study (ETDRS) chart as a near target and a building as a distant target were photographed using a digital single-lens reflex (DSLR) camera. Both lenses (multifocal and monofocal) were tested under the same conditions. Results For the 0 D and − 20 D focal points, the multifocal lens showed sharp images in the optical bench test. In the DSLR test using the multifocal lens, the building appeared slightly blurry compared with the results using the monofocal lens. With the multifocal lens, the ETDRS chart’s images became blurry as the ETDRS chart’s distance decreased, but became very clear again at a certain position. Conclusions We confirmed the multifocal function of the multifocal lens using a PDF lens. This lens can be used as a multifocal IOL in the future.


2021 ◽  
Author(s):  
Ken Chen ◽  
Huiying Zhao ◽  
Yuedong Yang

AbstractAccurately identifying enhancer-promoter interactions (EPIs) is challenging because enhancers usually act on the promoters of distant target genes. Although a variety of machine learning and deep learning models have been developed, many of them are not designed to or could not be well applied to predict EPIs in cell types different from the training data. In this study, we develop the TransEPI model for EPI prediction based on datasets derived from Hi-C and ChIA-PET data. TransEPI compiles genomic features from large intervals harboring the enhancer-promoter pair and adopts a Transformer-based architecture to capture the long-range dependencies. Thus, TransEPI could achieve more accurate prediction by addressing the impact of other genomic loci that may competitively interact with the enhancer-promoter pair. We evaluate TransEPI in a challenging scenario, where the independent test samples are predicted by models trained on the data from different cell types and chromosomes. TransEPI robustly predicts cross-cell-type EPI prediction by achieving comparable performance in cross-validation and independent test. More importantly, TransEPI significantly outperforms the state-of-the-art EPI models on the independent test datasets, with the Area Under Precision-Recall Curve (auPRC) score increasing by 48.84 % on average. Hence, TransEPI is applicable for accurate EPI prediction in cell types without chromatin structure data. Moreover, we find the TransEPI framework could also be extended to identify the target gene of non-coding mutations, which may facilitate studying pathogenic non-coding mutations.


2021 ◽  
Author(s):  
K. Ehring ◽  
D. Manikowski ◽  
J. Goretzko ◽  
J. Froese ◽  
F. Gude ◽  
...  

The Sonic hedgehog (Shh) pathway controls embryonic development and tissue homeostasis after birth. Long-lasting questions about this pathway are how dual-lipidated, firmly plasma membrane-associated Shh ligand is released from producing cells to signal to distant target cells, and how the resistance-nodulation-division transporter Dispatched (Disp) regulates this process. Here we show that Disp inactivation in Shh expressing cells impairs proteolytic Shh release from its lipidated terminal peptides, a process called ectodomain shedding. We also show reduced cholesterol export from Disp-deficient cells, that these cells contain increased cholesterol amounts in the plasma membrane, and that Shh shedding from Disp-deficient cells is restored by pharmacological membrane cholesterol extraction and by overexpressed transgenic Disp or structurally related Patched (Ptc, a putative cholesterol transporter). These data suggest that Disp can regulate Shh function via controlled cell surface shedding and that membrane cholesterol-related molecular mechanisms shared by Disp and Ptc exercise such sheddase control.


2021 ◽  
Vol 11 (13) ◽  
pp. 6221
Author(s):  
Benjamin Wilson ◽  
Santasri Bose-Pillai ◽  
Jack McCrae ◽  
Kevin Keefer ◽  
Steven Fiorino

Knowledge of turbulence distribution along an experimental path can help in effective turbulence compensation and mitigation. Although scintillometers are traditionally used to measure the strength of turbulence, they provide a path-integrated measurement and have limited operational ranges. A technique to profile turbulence using time-lapse imagery of a distant target from spatially separated cameras is presented here. The method uses the turbulence induced differential motion between pairs of point features on a target, sensed at a single camera and between cameras to extract turbulence distribution along the path. The method is successfully demonstrated on a 511 m almost horizontal path going over half concrete and half grass. An array of Light-Emitting Diodes (LEDs) of non-uniform separation is imaged by a pair of cameras, and the extracted turbulence profiles are validated against measurements from 3D sonic anemometers placed along the path. A short-range experiment with a heat source to create local turbulence spike gives good results as well. Because the method is phase-based, it does not suffer from saturation issues and can potentially be applied over long ranges. Although in the present work, a cooperative target has been used, the technique can be used with non-cooperative targets. Application of the technique to images collected over slant paths with elevated targets can aid in understanding the altitude dependence of turbulence in the surface layer.


2021 ◽  
pp. ASN.2020111579
Author(s):  
Theresa Wewers ◽  
Annika Schulz ◽  
Ingo Nolte ◽  
Hermann Pavenstaedt ◽  
Marcus Brand ◽  
...  

Soluble Fms-like tyrosine kinase (sFlt-1/sVEGFR1) is a natural occurring antagonist of vascular endothelial growth factor (VEGF). Despite being a secreted, soluble protein lacking cytoplasmic and transmembrane domains, sFlt-1 can act locally and be protective against excessive microenvironmental VEGF concentration, or exert autocrine functions independently of VEGF. Circulating sFlt-1 may indiscriminately affect endothelial function and the microvasculature on distant target organs. The clinical significance of excess sFlt-1 in kidney disease was first shown in preeclampsia, a major renal complication of pregnancy. However, circulating sFlt-1 levels appear to be increased in different diseases with varying degrees of renal impairment. Relevant clinical associations between circulating sFlt-1 and severe outcomes (e.g., endothelial dysfunction, renal impairment, cardiovascular disease, and all-cause mortality) have been observed in patients with chronic kidney disease and following kidney transplantation. However, sFlt-1 appears to be protective against renal dysfunction-associated aggravation of atherosclerosis and diabetic nephropathy. Therefore, in this review, we provide an update on sFlt-1 in several kidney diseases other than preeclampsia, discuss clinical findings and experimental studies, and briefly consider its use in clinical practice.


2021 ◽  
pp. 002215542110262
Author(s):  
Sara Santamaria ◽  
Maria Cristina Gagliani ◽  
Grazia Bellese ◽  
Silvia Marconi ◽  
Anastasia Lechiara ◽  
...  

Breast cancers (BCa) with ERBB2 amplification show rapid tumor growth, increased disease progression, and lower survival rate. Deregulated intracellular trafficking and extracellular vesicle (EVs) release are mechanisms that support cancer progression and resistance to treatments. Neratinib (NE) is a Food and Drug Administration–approved pan-ERBB inhibitor employed for the treatment of ERBB2+ BCa that blocks signaling and causes survival inhibition. However, the effects of NE on ERBB2 internalization, its trafficking to multivesicular bodies (MVBs), and the release of EVs that originate from these organelles remain poorly studied. By confocal and electron microscopy, we observed that low nanomolar doses of NE induced a modest ERBB2 internalization along with an increase of clathrin-mediated endocytosis and of the CD63+ MVB compartment in SKBR-3 cells. Furthermore, we showed in the culture supernatant two distinct EV subsets, based on their size and ERBB2 positivity: small (30–100 nm) ERBB2− EVs and large (>100 nm) ERBB2+ EVs. In particular, we found that NE increased the overall release of EVs, which displayed a reduced ERBB2 positivity compared with controls. Taken together, these results provide novel insight into the effects of NE on ERBB2+ BCa cells that may lead to a reduction of ERBB2 potentially transferred to distant target cells by EVs:


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yandong Luo ◽  
Jianwen Guo ◽  
Zhenpeng Lao ◽  
Shaohui Zhang ◽  
Xiaohui Yan

Physarum polycephalum, a unicellular and multiheaded slime mould, can form highly efficient networks connecting separated food sources during the process of foraging. These adaptive networks exhibit a unique characteristic in that they are optimized without the control of a central consciousness. Inspired by this phenomenon, we present an efficient exploration and navigation strategy for a swarm of robots, which exploits cooperation and self-organisation to overcome the limited abilities of the individual robots. The task faced by the robots consists in the exploration of an unknown environment in order to find a path between two distant target areas. For the proposed algorithm (EAIPP), we experimentally present robustness tests and obstacle tests conducted to analyse the performance of our algorithm and compare the proposed algorithm with other swarm robot foraging algorithms that also focus on the path formation task. This work has certain significance for the research of swarm robots and Physarum polycephalum. For the research of swarm robotics, our algorithm not only can lead multirobot as a whole to overcome the limitations of very simple individual agents but also can offer better performance in terms of search efficiency and success rate. For the research of Physarum polycephalum, this work is the first one combining swarm robots and Physarum polycephalum. It also reveals the potential of the Physarum polycephalum foraging principle in multirobot systems.


Author(s):  
Wladimir Kirsch ◽  
Wilfried Kunde ◽  
Oliver Herbort

AbstractPrevious research has revealed changes in the perception of objects due to changes of object-oriented actions. In present study, we varied the arm and finger postures in the context of a virtual reaching and grasping task and tested whether this manipulation can simultaneously affect the perceived size and distance of external objects. Participants manually controlled visual cursors, aiming at reaching and enclosing a distant target object, and judged the size and distance of this object. We observed that a visual–proprioceptive discrepancy introduced during the reaching part of the action simultaneously affected the judgments of target distance and of target size (Experiment 1). A related variation applied to the grasping part of the action affected the judgments of size, but not of distance of the target (Experiment 2). These results indicate that perceptual effects observed in the context of actions can directly arise through sensory integration of multimodal redundant signals and indirectly through perceptual constancy mechanisms.


2021 ◽  
pp. 2150034
Author(s):  
Zhanjun Zhang

A three-party scheme for sharing an arbitrary single-qubit operation on a distant target qubit is proposed by first utilizing a six-qubit genuinely entangled state presented by [Borras et al., J. Phys. A 40, 13407 (2007)]. The security of the scheme is simply analyzed and ensured. The essential role which the state in the given qubit distribution plays in the QOS task is revealed. The important features including the sharing determinacy and the sharer symmetry are identified. Moreover, the experimental implementation feasibility of the scheme is discussed and confirmed.


Sign in / Sign up

Export Citation Format

Share Document