medial vestibular nucleus
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 16)

H-INDEX

38
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3377
Author(s):  
Emna Marouane ◽  
Nada El Mahmoudi ◽  
Guillaume Rastoldo ◽  
David Péricat ◽  
Isabelle Watabe ◽  
...  

Acute peripheral vestibulopathy leads to a cascade of symptoms involving balance and gait disorders that are particularly disabling for vestibular patients. Vestibular rehabilitation protocols have proven to be effective in improving vestibular compensation in clinical practice. Yet, the underlying neurobiological correlates remain unknown. The aim of this study was to highlight the behavioural and cellular consequences of a vestibular rehabilitation protocol adapted to a rat model of unilateral vestibular neurectomy. We developed a progressive sensory-motor rehabilitation task, and the behavioural consequences were quantified using a weight-distribution device. This analysis method provides a precise and ecological analysis of posturolocomotor vestibular deficits. At the cellular level, we focused on the analysis of plasticity mechanisms expressed in the vestibular nuclei. The results obtained show that vestibular rehabilitation induces a faster recovery of posturolocomotor deficits during vestibular compensation associated with a decrease in neurogenesis and an increase in microgliogenesis in the deafferented medial vestibular nucleus. This study reveals for the first time a part of the underlying adaptative neuroplasticity mechanisms of vestibular rehabilitation. These original data incite further investigation of the impact of rehabilitation on animal models of vestibulopathy. This new line of research should improve the management of vestibular patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. S. Kalinina ◽  
M. A. Ptukha ◽  
A. V. Goriainova ◽  
N. S. Merkulyeva ◽  
A. A. Kozlova ◽  
...  

AbstractClassical monoamines are well-known modulators of sensorimotor neural networks. However, the role of trace amines and their receptors in sensorimotor function remains unexplored. Using trace amine-associated receptor 5 knockout (TAAR5-KO) mice, that express beta-galactosidase mapping its localization, we observed TAAR5 expression in the Purkinje cells of the cerebellum and the medial vestibular nucleus, suggesting that TAAR5 might be involved in the vestibular and motor control. Accordingly, in various behavioral tests, TAAR5-KO mice demonstrated lower endurance, but better coordination and balance compared to wild-type controls. Furthermore, we found specific changes in striatal local field potentials and motor cortex electrocorticogram, such as a decrease in delta and an increase in theta oscillations of power spectra, respectively. The obtained data indicate that TAAR5 plays a considerable role in regulation postural stability, muscle force, balance, and motor coordination during active movements, likely via modulation of monoaminergic systems at different levels of sensorimotor control involving critical brain areas such as the brainstem, cerebellum, and forebrain.


2021 ◽  
Author(s):  
Daria Kalinina ◽  
Maria Ptukha ◽  
Anastasia Goriainova ◽  
Natalia Merkulyeva ◽  
Alena Kozlova ◽  
...  

Abstract Monoamines are critical modulators of the sensorimotor neural networks. Using trace amine associated receptor 5 (TAAR5) knockout mice that express beta-galactosidase marker, we observed TAAR5 expression in the medial vestibular nucleus and Purkinje cells in the cerebellum suggesting that TAAR5 might be involved in gaze stabilization, vestibular and motor control. Accordingly, in various behavioral tests TAAR5-KO mice demonstrated lower endurance but better coordination and balance compared to wild type mice. Furthermore, we found specific changes in striatal local field potentials and motor cortex ECoG such as а decrease in delta andan increase in theta oscillations of power spectra respectively. The data obtained suggest that TAAR5 plays a considerable role in the regulation of postural stability, muscle force, balance and motor coordination during active movements, likely via modulation of monoaminergic systems on different levels of sensorimotor control, including brainstem, cerebellum and forebrain.


2021 ◽  
Vol 11 (3) ◽  
pp. 360
Author(s):  
Junya Fukuda ◽  
Kazunori Matsuda ◽  
Go Sato ◽  
Tadashi Kitahara ◽  
Momoyo Matsuoka ◽  
...  

Background: Vestibular compensation (VC) after unilateral labyrinthectomy (UL) consists of the initial and late processes. These processes can be evaluated based on the decline in the frequency of spontaneous nystagmus (SN) and the number of MK801-induced Fos-positive neurons in the contralateral medial vestibular nucleus (contra-MVe) in rats. Histamine H3 receptors (H3R) are reported to be involved in the development of VC. Objective: We examined the effects of betahistine, an H3R antagonist, on the initial and late processes of VC in UL rats. Methods: Betahistine dihydrochloride was continuously administered to the UL rats at doses of 100 and 200 mg/kg/day using an osmotic minipump. MK801 (1.0 mg/kg) was intraperitoneally administered on days 7, 10, 12, and 14 after UL, while Fos-positive neurons were immunohistochemically stained in the contra-MVe. Results: The SN disappeared after 42 h, and continuous infusion of betahistine did not change the decline in the frequency of SN. The number of MK801-induced Fos-positive neurons in contra-MVe significantly decreased on days 7, 10, and 12 after UL in a dose-dependent manner in the betahistine-treated rats, more so than in the saline-treated rats. Conclusion: These findings suggest that betahistine facilitated the late, but not the initial, process of VC in UL rats.


2020 ◽  
Vol 599 (1) ◽  
pp. 253-267
Author(s):  
Lei Han ◽  
Kenneth Lap‐Kei Wu ◽  
Pui‐Yi Kwan ◽  
Oscar Wing‐Ho Chua ◽  
Daisy Kwok‐Yan Shum ◽  
...  

2020 ◽  
Vol 26 (33) ◽  
pp. 4185-4194
Author(s):  
Jing-Jing Zhu ◽  
Shu-Hui Wu ◽  
Xiang Chen ◽  
Ting-Ting Jiang ◽  
Xin-Qian Li ◽  
...  

Background: The aim of the present study was to investigate the protective effects of Tanshinone IIA (Tan IIA) on hypoxia-induced injury in the medial vestibular nucleus (MVN) cells. Methods: An in vitro hypoxia model was established using MVN cells exposed to hypoxia. The hypoxia-induced cell damage was confirmed by assessing cell viability, apoptosis and expression of apoptosis-associated proteins. Oxidative stress and related indicators were also measured following hypoxia modeling and Tan IIA treatment, and the genes potentially involved in the response were predicted using multiple GEO datasets. Results: The results of the present study showed that Tan IIA significantly increased cell viability, decreased cell apoptosis and decreased the ratio of Bax/Bcl-2 in hypoxia treated cells. In addition, hypoxia treatment increased oxidative stress in MVN cells, and treatment with Tan IIA reduced the oxidative stress. The expression of SPhase Kinase Associated Protein 2 (SKP2) was upregulated in hypoxia treated cells, and Tan IIA treatment reduced the expression of SKP2. Mechanistically, SKP2 interacted with large-conductance Ca2+-activated K+ channels (BKCa), regulating its expression, and BKCa knockdown alleviated the protective effects of Tan IIA on hypoxia induced cell apoptosis. Conclusion: The results of the present study suggested that Tan IIA had a protective effect on hypoxia-induced cell damage through its anti-apoptotic and anti-oxidative activity via an SKP2/BKCa axis. These findings suggest that Tan IIA may be a potential therapeutic for the treatment of hypoxia-induced vertigo.


Sign in / Sign up

Export Citation Format

Share Document