Effects of ear plugging on single-unit azimuth sensitivity in cat primary auditory cortex. II. Azimuth tuning dependent upon binaural stimulation

1994 ◽  
Vol 71 (6) ◽  
pp. 2194-2216 ◽  
Author(s):  
F. K. Samson ◽  
P. Barone ◽  
J. C. Clarey ◽  
T. J. Imig

1. Single-unit recordings were carried out in primary auditory cortex (AI) of barbiturate-anesthetized cats. Observations were based on a sample of 131 high-best-frequency (> 5 kHz), azimuth-sensitive neurons. These were identified by their responses to a set of noise bursts, presented in the free field, that varied in azimuth and sound-pressure level (SPL). Each azimuth-sensitive neuron responded well to some levels at certain azimuths, but did not respond well to any level at other azimuths. 2. Unilateral ear plugging was used to infer each neuron's response to monaural stimulation. Ear plugs, produced by injecting a plastic ear mold compound into the external ear, attenuated sound reaching the tympanic membrane by 25–70 dB. The azimuth tuning of a large proportion of the sample (62/131), referred to as binaural directional (BD), was completely dependent upon binaural stimulation because with one ear plugged, these cells were insensitive to azimuth (either responded well at all azimuths or failed to respond at any azimuth) or in a few cases exhibited striking changes in location of azimuth function peaks. This report describes patterns of monaural responses and binaural interactions exhibited by BD neurons and relates them to each cell's azimuth and level tuning. The response of BD cells to ear plugging is consistent with the hypothesis that they derive azimuth tuning from interaural level differences present in noise bursts. Another component of the sample consisted of monaural directional (27/131) cells that derived azimuth tuning in part or entirely from monaural spectral cues. Cells in the remaining portion of the sample (42/131) responded too unreliably to permit specific conclusions. 3. Binaural interactions were inferred by statistical comparison of a cell's responses to monaural (unilateral plug) and binaural (no plug) stimulation. A larger binaural response than either monaural response was taken as evidence for binaural facilitation. A smaller binaural than monaural response was taken as evidence for binaural inhibition. Binaural facilitation was exhibited by 65% (40/62) of the BD sample (facilitatory cells). Many of these exhibited mixed interactions, i.e., binaural facilitation occurred in response to some azimuth-level combinations, and binaural inhibition to others. Binaural inhibition in the absence of binaural facilitation occurred in 35% (22/62) of the BD sample, a majority of which were EI cells, so called because they received excitatory (E) input from one ear (excitatory ear) and inhibitory (I) input from the other (inhibitory ear). One cell that exhibited binaural inhibition received excitatory input from each ear.(ABSTRACT TRUNCATED AT 400 WORDS)

1993 ◽  
Vol 70 (2) ◽  
pp. 492-511 ◽  
Author(s):  
F. K. Samson ◽  
J. C. Clarey ◽  
P. Barone ◽  
T. J. Imig

1. Single-unit recordings were carried out in primary auditory cortex (AI) of barbiturate-anesthetized cats. Neurons, sensitive to sound direction in the horizontal plane (azimuth), were identified by their responses to noise bursts, presented in the free field, that varied in azimuth and sound pressure level (SPL). SPLs typically varied between 0 and 80 dB and were presented at each azimuth that was tested. Each azimuth-sensitive neuron responded well to some SPLs at certain azimuths and did not respond well to any SPL at other azimuths. This report describes AI neurons that were sensitive to the azimuth of monaurally presented noise bursts. 2. Unilateral ear plugging was used to test each azimuth-sensitive neuron's response to monaural stimulation. Ear plugs, produced by injecting a plastic ear mold compound into the concha and ear canal, attenuated sound reaching the tympanic membrane by 25-70 dB. Binaural interactions were inferred by comparing responses obtained under binaural (no plug) and monaural (ear plug) conditions. 3. Of the total sample of 131 azimuth-sensitive cells whose responses to ear plugging were studied, 27 were sensitive to the azimuth of monaurally presented noise bursts. We refer to these as monaural directional (MD) cells, and this report describes their properties. The remainder of the sample consisted of cells that either required binaural stimulation for azimuth sensitivity (63/131), because they were insensitive to azimuth under unilateral ear plug conditions or responded too unreliably to permit detailed conclusions regarding the effect of ear plugging (41/131). 4. Most (25/27) MD cells received either monaural input (MD-E0) or binaural excitatory/inhibitory input (MD-EI), as inferred from ear plugging. Two MD cells showed other characteristics. The contralateral ear was excitatory for 25/27 MD cells. 5. MD-E0 cells (22%, 6/27) were monaural. They were unaffected by unilateral ear plugging, showing that they received excitatory input from one ear, and that stimulation of the other ear was without apparent effect. On the other hand, some monaural cells in AI were insensitive to the azimuth of noise bursts, showing that sensitivity to monaural directional cues is not a property of all monaural cells in AI. 6. MD-EI cells (70%, 19/27) exhibited an increase in responsiveness on the side of the plugged ear, showing that they received excitatory drive from one ear and inhibitory drive from the other. MD-EI cells remained azimuth sensitive with the inhibitory ear plugged, showing that they were sensitive to monaural directional cues at the excitatory ear.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 84 (3) ◽  
pp. 1330-1345 ◽  
Author(s):  
Frank K. Samson ◽  
Pascal Barone ◽  
W. Andrew Irons ◽  
Janine C. Clarey ◽  
Pierre Poirier ◽  
...  

Azimuth tuning of high-frequency neurons in the primary auditory cortex (AI) is known to depend on binaural disparity and monaural spectral (pinna) cues present in broadband noise bursts. Single-unit response patterns differ according to binaural interactions, strength of monaural excitatory input from each ear, and azimuth sensitivity to monaural stimulation. The latter characteristic has been used as a gauge of neural sensitivity to monaural spectral directional cues. Azimuth sensitivity may depend predominantly on binaural disparity cues, exclusively on monaural spectral cues, or on both. The primary goal of this study was to determine whether each cortical response pattern corresponds to a similar pattern in the medial geniculate body (MGB) or whether some patterns are unique to the cortex. Single-unit responses were recorded from the ventral nucleus (Vn) and lateral part of the posterior group of thalamic nuclei (Po), tonotopic subdivisions of the MGB. Responses to free-field presentation of noise bursts that varied in azimuth and sound pressure level were obtained using methods identical to those used previously in field AI. Many units were azimuth sensitive, i.e., they responded well at some azimuths, and poorly, if at all, at others. These were studied further by obtaining responses to monaural noise stimulation, approximated by reversible plugging of one ear. Monaural directional (MD) cells were sensitive to the azimuth of monaural noise stimulation, whereas binaural directional (BD) cells were either insensitive to its azimuth or monaurally unresponsive. Thus BD and MD cells show differential sensitivity to monaural spectral cues. Monaural azimuth sensitivity could not be used to interpret the spectral sensitivity of predominantly binaural cells that exhibited strong binaural facilitation because they were either unresponsive or poorly responsive to monaural stimulation. The available evidence suggests that some such cells are sensitive to spectral cues. The results do not indicate the presence of any response types in AI that are not present in the MGB. Vn and Po contain similar classes of MD and BD cells. Because Po neurons project to the anterior auditory field, neurons in this cortical area also are likely to exhibit differential sensitivity to binaural disparity and monaural spectral cues. Comparison of these MGB data with a published report of cochlear nucleus (CN) single-unit azimuth tuning shows that MGB sensitivity to spectral cues is considerably stronger than CN sensitivity.


1990 ◽  
Vol 63 (6) ◽  
pp. 1448-1466 ◽  
Author(s):  
T. J. Imig ◽  
W. A. Irons ◽  
F. R. Samson

1. The azimuth and sound pressure level (SPL) selectivities of single-unit responses recorded in primary auditory cortex of barbiturate-anesthetized cats were studied by the use of broadband noise bursts delivered in the free field from a moveable loud-speaker. The experiments were carried out with cats located inside a quasianechoic sound-isolation chamber. We studied 71 units with relatively stable response properties. All units were located in the frequency representation between 5.8 and 31 kHz. The data obtained for each unit were displayed as an azimuth-level response area, a contour plot that displays the distribution of response magnitude as a joint function of SPL and azimuth at 0 degrees elevation. From these, azimuth and level functions were obtained to derive descriptors of azimuth and level selectivity. 2. Sensitivity to sound-source azimuth was assessed from the modulation of the average azimuth function (average of azimuth functions obtained to each SPL of noise that was presented) for each unit. The sample was arbitrarily divided into a high-directionality (HD) group (66%) whose average azimuth functions had modulation values of greater than or equal to 75% and a low-directionality (LD) group (34%). The distinction between HD and LD groups was made so that we could analyze the characteristics of units likely to be involved in the representation of sound-source azimuth. 3. There is an overrepresentation of the contralateral sound field and the midline in the sample of HD units. The preferred sector for each unit was defined as the range of azimuths within the frontal sound field throughout which unit response was greater than or equal to 75% of maximum. Each unit was classified as either midline preferring (17%, the midpoint of the preferred sector, i.e., best azimuth, was located within 5 degrees of the midline), contralateral preferring (60%), or ipsilateral preferring (23%). The ratio of contralateral- to ipsilateral-preferring units was 2.5:1. A higher proportion of units had best azimuths located in the 10 degrees sector centered on the midline than in any other 10 degrees sector of the frontal sound field. 4. In one animal, recordings were obtained at seven closely spaced sites in layer IV from single- and multiunit responses, which were narrowly tuned to both azimuth and SPL. The units located along a 1-mm length of an isofrequency strip were tuned to similar frequencies and SPLs but had five distinctly different directional preferences distributed throughout the entire frontal sound field.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 75 (1) ◽  
pp. 75-96 ◽  
Author(s):  
D. R. Irvine ◽  
R. Rajan ◽  
L. M. Aitkin

1. Interaural intensity differences (IIDs) provide the major cue to the azimuthal location of high-frequency narrowband sounds. In recent studies of the azimuthal sensitivity of high-frequency neurons in the primary auditory cortex (field AI) of the cat, a number of different types of azimuthal sensitivity have been described and the azimuthal sensitivity of many neurons was found to vary as a function of changes in stimulus intensity. The extent to which the shape and the intensity dependence of the azimuthal sensitivity of AI neurons reflects features of their IID sensitivity was investigated by obtaining data on IID sensitivity from a large sample of neurons with a characteristic frequency (CF) > 5.5 kHz in AI of anesthetized cats. IID sensitivity functions were classified in a manner that facilitated comparison with previously obtained data on azimuthal sensitivity, and the effects of changes in the base intensity at which IIDs were introduced were examined. 2. IID sensitivity functions for CF tonal stimuli were obtained at one or more intensities for a total of 294 neurons, in most cases by a method of generating IIDs that kept the average binaural intensity (ABI) of the stimuli at the two ears constant. In the standard ABI range at which a function was obtained for each unit, five types of IID sensitivity were distinguished. Contra-max neurons (50% of the sample) had maximum response (a peak or a plateau) at IIDs corresponding to contralateral azimuths, whereas ipsi-max neurons (17%) had the mirror-image form of sensitivity. Near-zero-max neurons (18%) had a clearly defined maximum response (peak) in the range of +/- 10 dB IID, whereas a small group of tough neurons (2%) had a restricted range of minimal responsiveness with near-maximal responses at IIDs on either side. A final 18% of AI neurons were classified as insensitive to IIDs. The proportions of neurons exhibiting the various types of sensitivity corresponded closely to the proportions found to exhibit corresponding types of azimuthal sensitivity in a previous study. 3. There was a strong correlation between a neuron's binaural interaction characteristics and the form of its IID sensitivity function. Thus, neurons excited by monaural stimulation of only one ear but with either inhibitory, facilitatory, or mixed facilitatory-inhibitory effects of stimulation of the other ear had predominantly contra-max IID sensitivity (if contralateral monaural stimulation was excitatory) or ipsi-max sensitivity (if ipsilateral monaural stimulation was excitatory). Neurons driven weakly or not at all by monaural stimulation but facilitated binaurally almost all exhibited near-zero-max IID sensitivity. The exception to this tight association between binaural input and IID sensitivity was provided by neurons excited by monaural stimulation of either ear (EE neurons). Although EE neurons have frequently been considered to be insensitive to IIDs, our data were in agreement with two recent reports indicating that they can exhibit various forms of IID sensitivity: only 23 of 75 EE neurons were classified as insensitive and the remainder exhibited diverse types of sensitivity. 4. IID sensitivity was examined at two or more intensities (3-5 in most cases) for 84 neurons. The form of the IID sensitivity function (defined in terms of both shape and position along the IID axis) was invariant with changes in ABI for only a small proportion of IID-sensitive neurons (approximately 15% if a strict criterion of invariance was employed), and for many of these neurons the spike counts associated with a given IID varied with ABI, particularly at near-threshold levels. When the patterns of variation in the form of IID sensitivity produced by changes in ABI were classified in a manner equivalent to that used previously to classify the effects of intensity on azimuthal sensitivity, there was a close correspondence between the effects of intensity on corresponding types of azimuthal and IID sensitivity


2013 ◽  
Vol 110 (9) ◽  
pp. 2140-2151 ◽  
Author(s):  
Justin D. Yao ◽  
Peter Bremen ◽  
John C. Middlebrooks

The rat is a widely used species for study of the auditory system. Psychophysical results from rats have shown an inability to discriminate sound source locations within a lateral hemifield, despite showing fairly sharp near-midline acuity. We tested the hypothesis that those characteristics of the rat's sound localization psychophysics are evident in the characteristics of spatial sensitivity of its cortical neurons. In addition, we sought quantitative descriptions of in vivo spatial sensitivity of cortical neurons that would support development of an in vitro experimental model to study cortical mechanisms of spatial hearing. We assessed the spatial sensitivity of single- and multiple-neuron responses in the primary auditory cortex (A1) of urethane-anesthetized rats. Free-field noise bursts were varied throughout 360° of azimuth in the horizontal plane at sound levels from 10 to 40 dB above neural thresholds. All neurons encountered in A1 displayed contralateral-hemifield spatial tuning in that they responded strongly to contralateral sound source locations, their responses cut off sharply for locations near the frontal midline, and they showed weak or no responses to ipsilateral sources. Spatial tuning was quite stable across a 30-dB range of sound levels. Consistent with rat psychophysical results, a linear discriminator analysis of spike counts exhibited high spatial acuity for near-midline sounds and poor discrimination for off-midline locations. Hemifield spatial tuning is the most common pattern across all mammals tested previously. The homogeneous population of neurons in rat area A1 will make an excellent system for study of the mechanisms underlying that pattern.


Acta Acustica ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. 21
Author(s):  
Song Li ◽  
Robert Baumgartner ◽  
Jürgen Peissig

Perceived externalization is a relevant feature to create an immersive acoustic environment with headphone reproduction. In the present study, listener-specific acoustic transfer characteristics for an azimuth angle of 90° were modified to investigate the role of monaural spectral cues, interaural level differences (ILDs), and temporal fluctuations of ILDs on perceived externalization in anechoic and reverberant environments. Listeners’ ratings suggested that each acoustic cue was important for perceived externalization. If only one correct acoustic cue remained in the ear signals, the sound image could not be perceived as fully externalized. Reverberation did reduce but not eliminate the influences of monaural spectral and ILD cues on perceived externalization. Additionally, the spectral details of the ipsilateral ear signal were more important for perceived externalization than those in the contralateral ear signal. A computational model was proposed to quantify those relationships and predict externalization ratings by comparing the acoustic cues extracted from the target (modified) and template (non-processed) binaural signals after several auditory processing steps. The accuracy of predicted externalization ratings was higher than 90% under all experimental conditions.


2019 ◽  
Author(s):  
Jong Hoon Lee ◽  
Xiaoqin Wang ◽  
Daniel Bendor

AbstractIn primary auditory cortex, slowly repeated acoustic events are represented temporally by phase-locked activity of single neurons. Single-unit studies in awake marmosets (Callithrix jacchus) have shown that a sub-population of these neurons also monotonically increase or decrease their average discharge rate during stimulus presentation for higher repetition rates. Building on a computational single-neuron model that generates phase-locked responses with stimulus evoked excitation followed by strong inhibition, we find that stimulus-evoked short-term depression is sufficient to produce synchronized monotonic positive and negative responses to slowly repeated stimuli. By exploring model robustness and comparing it to other models for adaptation to such stimuli, we conclude that short-term depression best explains our observations in single-unit recordings in awake marmosets. Using this model, we emulated how single neurons could encode and decode multiple aspects of an acoustic stimuli with the monotonic positive and negative encoding of a given stimulus feature. Together, our results show that a simple biophysical mechanism in single neurons can allow a more complex encoding and decoding of acoustic stimuli.


1983 ◽  
Vol 50 (5) ◽  
pp. 1182-1196 ◽  
Author(s):  
A. Asanuma ◽  
D. Wong ◽  
N. Suga

The orientation sound emitted by the Panamanian mustached bat, Pteronotus parnellii rubiginosus, consists of four harmonics. The third harmonic is 6-12 dB weaker than the predominant second harmonic and consists of a long constant-frequency component (CF3) at about 92 kHz and a short frequency-modulated component (FM3) sweeping from about 92 to 74 kHz. Our primary aim is to examine how CF3 and FM3 are represented in a region of the primary auditory cortex anterior to the Doppler-shifted constant-frequency (DSCF) area. Extracellular recordings of neuronal responses from the unanesthetized animal were obtained during free-field stimulation of the ears with pure tones. FM sounds, and signals simulating their orientation sounds and echoes. Response properties of neurons and tonotopic and amplitopic representations were examined in the primary and the anteroventral nonprimary auditory cortex. In the anterior primary auditory cortex, neurons responded strongly to single pure tones but showed no facilitative responses to paired stimuli. Neurons with best frequencies from 110 to 90 kHz were tonotopically organized rostrocaudally, with higher frequencies located more rostrally. Neurons tuned to 92-94 kHz were overpresented, whereas neurons tuned to sound between 64 and 91 kHz were rarely found. Consequently a striking discontinuity in frequency representation from 91 to 64 kHz was found across the anterior DSCF border. Most neurons exhibited monotonic impulse-count functions and responded maximally to sound pressure level (SPL). There were also neurons that responded best to weak sounds but unlike the DSCF area, amplitopic representation was not found. Thus, the DSCF area is quite unique not only in its extensive representation of frequencies in the second harmonic CF component but also in its amplitopic representation. The anteroventral nonprimary auditory cortex consisted of neurons broadly tuned to pure tones between 88 and 99 kHz. Neither tonotopic nor amplitopic representation was observed. Caudal to this area and near the anteroventral border of the DSCF area, a small cluster of FM-FM neurons sensitive to particular echo delays was identified. The responses of these neurons fluctuated significantly during repetitive stimulation.


Sign in / Sign up

Export Citation Format

Share Document