Acta Acustica
Latest Publications


TOTAL DOCUMENTS

90
(FIVE YEARS 90)

H-INDEX

1
(FIVE YEARS 1)

Published By EDP Sciences

2681-4617

Acta Acustica ◽  
2022 ◽  
Vol 6 ◽  
pp. 1
Author(s):  
Pedro Lladó ◽  
Petteri Hyvärinen ◽  
Ville Pulkki

Auditory localisation accuracy may be degraded when a head-worn device (HWD), such as a helmet or hearing protector, is used. A computational method is proposed in this study for estimating how horizontal plane localisation is impaired by a HWD through distortions of interaural cues. Head-related impulse responses (HRIRs) of different HWDs were measured with a KEMAR and a binaural auditory model was used to compute interaural cues from HRIR-convolved noise bursts. A shallow neural network (NN) was trained with data from a subjective listening experiment, where horizontal plane localisation was assessed while wearing different HWDs. Interaural cues were used as features to estimate perceived direction and position uncertainty (standard deviation) of a sound source in the horizontal plane with the NN. The NN predicted the position uncertainty of localisation among subjects for a given HWD with an average estimation error of 1°. The obtained results suggest that it is possible to predict the degradation of localisation ability for specific HWDs in the frontal horizontal plane using the method.


Acta Acustica ◽  
2022 ◽  
Vol 6 ◽  
pp. 2
Author(s):  
Paul Cambourian ◽  
Arthur Paté ◽  
Caroline Cance ◽  
Benoît Navarret ◽  
Jérôme Vasseur

This work presents a multidisciplinary approach to vibrotactile perception, applying linguistic methods to musical acoustics. We are interested more particularly in the sense of touch as a part of the multisensory experience of playing a musical instrument. Six words and their inflections are chosen from the literature in musical acoustics dealing with vibrotactile perception: “comfort”, “dynamics”, “response”, “feeling”, “touch” and “vibration”. Their use by musicians in playing situation is analyzed. The data used in this article comes from transcripts of two previous studies, conducted in French with professional guitarists natively speaking French. The linguistic analysis of the corpus is based on different features which help to categorize the utterances according to each observed parameter, namely the relationship with the sense of touch, the object that is qualified by the words under study and the implication in discourse of the interviewee. The results permit to understand the use of the six categories of words in relationship with the sense of touch, and provide perspectives to use some of these words to focus the discourse on the sense of touch in future studies.


Acta Acustica ◽  
2022 ◽  
Vol 6 ◽  
pp. 3
Author(s):  
Catherine Lavandier ◽  
Mehdi Regragui ◽  
Romain Dedieu ◽  
Carine Royer ◽  
Arnaud Can

The influence of fluctuating road traffic noise on perceived disturbance during a reading task as well as on performance, inside a living room with closed windows, is presented in this paper. Sixteen 2-min sound sequences were created combining two variables: the number of events (four levels varying from one to four car pass-bys) and the peak emergence above the background noise (four levels with a 5 dB(A) step) keeping limited variations of LAmax, 1s. The noise impact was evaluated through a reading task of texts synchronized with the sound sequences, for participants classified into fast or slow readers, and sensitive or non-sensitive to noise. The comprehension rate of the texts decreases as the background sound level increases. The reading speed decreases during the rising front of a peak, and goes back to its former regular reading speed during the descending front of the peak. This slowdown during the rising front reaches 14% for slow readers. The declared disturbance is higher for slow readers compared to fast readers, and higher for noise sensitive persons compared to non-sensitive persons. The influence of the acoustic indicators on the reading disturbance is very small compared to the influence of personal factors. There is even no influence of the number of events on this disturbance.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 58
Author(s):  
Michael Kohnen ◽  
Florian Denk ◽  
Josep Llorca-Bofi ◽  
Birger Kollmeier ◽  
Michael Vorländer

Headphone transfer function (HpTF) and head-related transfer function (HRTF) measurements are crucial in acoustic science and in binaural virtual acoustic applications. Yet, their measurement set-up, procedure or post-processing is different for nearly every lab, especially for the HRTF measurements. To compare findings between different labs, these measurement deviations have to be quantified alongside with their influence on perceptual aspects. In the scope of a cross-site investigation on loudness balancing between headphone and loudspeaker listening, a set of HpTFs with three different headphones (open, closed, insert earphones) and HRTF close to the eardrum were measured in 14 participants travelling to two different measurement sites at Aachen and Oldenburg. Though set-ups for measuring the HRTF are very different between sites, the gathered HRTFs are quite consistent across them. For the measured HpTFs, across sites the open headphones consistently yield a slightly lower variability in the range from 70 to 5000 Hz than the closed one while the insert earphones exhibit much higher variabilities and a limited range of reproducible results. The difference in loudness balancing across labs could well be predicted by site-specific systematic differences in HpTFs with the exception of 1 kHz narrowband stimulus. This clearly indicates the limits in comparability of HpTFs and loudness balancing across labs and the importance of using headphones with high repeatability like the open ones used in this investigation.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 60
Author(s):  
Mathias Dietz ◽  
Jörg Encke ◽  
Kristin I Bracklo ◽  
Stephan D Ewert

Differences between the interaural phase of a noise and a target tone improve detection thresholds. The maximum masking release is obtained for detecting an antiphasic tone (Sπ) in diotic noise (N0). It has been shown in several studies that this benefit gradually declines as an interaural time delay (ITD) is applied to the noise. This decline has been attributed to the reduced interaural coherence of the noise. Here, we report detection thresholds for a 500 Hz tone in masking noise with ITDs up to 8 ms and bandwidths from 25 to 1000 Hz. Reducing the noise bandwidth from 100 to 50 and 25 Hz increased the masking release for 8-ms ITD, as expected for increasing temporal coherence with decreasing bandwidth. For bandwidths of 100–1000 Hz no significant difference in masking release was observed. Detection thresholds with these wider-band noises had an ITD dependence that is fully described by the temporal coherence imposed by the typical monaurally determined auditory-filter bandwidth. A binaural model based on interaural phase-difference fluctuations accounts for the data without using delay lines.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 10
Author(s):  
Johannes M. Arend ◽  
Heinrich R. Liesefeld ◽  
Christoph Pörschmann

Nearby sound sources provide distinct binaural cues, mainly in the form of interaural level differences, which vary with respect to distance and azimuth. However, there is a long-standing controversy regarding whether humans can actually utilize binaural cues for distance estimation of nearby sources. Therefore, we conducted three experiments using non-individual binaural synthesis. In Experiment 1, subjects had to estimate the relative distance of loudness-normalized and non-normalized nearby sources in static and dynamic binaural rendering in a multi-stimulus comparison task under anechoic conditions. Loudness normalization was used as a plausible method to compensate for noticeable intensity differences between stimuli. With the employed loudness normalization, nominal distance did not significantly affect distance ratings for most conditions despite the presence of non-individual binaural distance cues. In Experiment 2, subjects had to judge the relative distance between loudness-normalized sources in dynamic binaural rendering in a forced-choice task. Below chance performance in this more sensitive task revealed that the employed loudness normalization strongly affected distance estimation. As this finding indicated a general issue with loudness normalization for studies on relative distance estimation, Experiment 3 directly tested the validity of loudness normalization and a frequently used amplitude normalization. Results showed that both normalization methods lead to remaining (incorrect) intensity cues, which subjects most likely used for relative distance estimation. The experiments revealed that both examined normalization methods have consequential drawbacks. These drawbacks might in parts explain conflicting findings regarding the effectiveness of binaural cues for relative distance estimation in the literature.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 42
Author(s):  
Canyi Du ◽  
Xinfa Qiu ◽  
Feng Li ◽  
Ming Cai

The calculation and evaluation of traffic noise is an important task in urban road design. Roundabouts are a common form of urban road intersection. The complexity of traffic operations makes the calculation of traffic noise near a roundabout challenging. To explore traffic noise at roundabouts, a cellular automaton traffic flow model for a two-lane roundabout is established. Based on this model, a dynamic simulation method for traffic noise at roundabouts is proposed. The traffic operation and noise emissions at a roundabout are simulated. The vehicle speed distribution and traffic noise distribution at the roundabout are analysed, and the relationship between the traffic volume and sound power level of the cells is discussed. Finally, the proposed method is compared with existing traffic noise models, and the accuracy and efficiency of the proposed method are verified. The results of this paper show that the speed distribution and noise emission distribution at the roundabout are not uniform. When the traffic volume increases to saturation, the noise emission on the ring road will not keep increasing, and the sound power level of the cells on the inner ring is approximately 2 dBA higher than that of the outer ring. The methods and results in this paper may be valuable for road traffic design and noise control.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 11
Author(s):  
Kimie Onogi ◽  
Hiroshi Yokoyama ◽  
Akiyoshi Iida

For an isolated flute head joint, the effects of jet angle on harmonic structure of a single note are investigated within the practical range for human players. The mechanisms of these effects are discussed on the basis of both the radiated sound and the flow field measured with a hot-wire anemometer. The blowing parameters, viz., jet angle (angle between jet direction and window), jet offset (relative height of jet direction from the edge), lip-to-edge distance, and flow rate, were varied independently by using an artificial blowing device based on measured conditions for a human player, where the jet direction is defined as that measured without the head joint. The radiated sound revealed that jet angle varied the differential sound pressure level of the second to third harmonic (ΔSPL) less than jet offset, however, as much as flow rate and more than lip-to-edge distance. The spatial distribution of jet fluctuation center showed that, with increasing jet angle (the jet direction approaches vertical to the window), the jet deflected more inside, so that the actual jet offset was estimated to be further inside. The variation of ∆SPL with jet angle seems to be caused mainly by this shift in the actual jet offset.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 25
Author(s):  
David Poirier-Quinot ◽  
Brian F.G. Katz

This study examines the efficiency of a training protocol using a virtual reality application designed to accelerate individual’s selection of, and accommodation to, non-individualized HRTF profiles. This training introduces three elements to hasten audio localization performance improvement: an interactive HRTF selection method, a parametric training program based on active learning, and a relatively dry room acoustic simulation designed to increase the quantity of spatial cues presented. Participants rapidly selected an HRTF (≈5 min) followed by training over three sessions of 12 min distributed over 5 days. To study the impact of the room acoustic component on localization performance evolution, participants were divided into two groups: one acting as control reference, training with only anechoic renderings, the other training in reverberant conditions. The efficiency of the training program was assessed across groups and the entire protocol was assessed through direct comparisons with results reported in previous studies. Results indicate that the proposed training program led to improved learning rates compared to that of previous studies, and that the included room response accelerated the learning process.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 20
Author(s):  
Matthias Blochberger ◽  
Franz Zotter

Six-Degree-of-Freedom (6DoF) audio rendering interactively synthesizes spatial audio signals for a variable listener perspective based on surround recordings taken at multiple perspectives distributed across the listening area in the acoustic scene. Methods that rely on recording-implicit directional information and interpolate the listener perspective without the attempt of localizing and extracting sounds often yield high audio quality, but are limited in spatial definition. Methods that perform sound localization, extraction, and rendering typically operate in the time-frequency domain and risk introducing artifacts such as musical noise. We propose to take advantage of the rich spatial information recorded in the broadband time-domain signals of the multitude of distributed first-order (B-format) recording perspectives. Broadband time-variant signal extraction retrieving direct signals and leaving residuals to approximate diffuse and spacious sounds is less of a quality risk, and likewise is the broadband re-encoding to enhance spatial definition of both signal types. To detect and track direct sound objects in this process, we combine the directional data recorded at the single perspectives into a volumetric multi-perspective activity map for particle-filter tracking. Our technical and perceptual evaluation confirms that this kind of processing enhances the otherwise limited spatial definition of direct-sound objects of other broadband but signal-independent virtual loudspeaker object (VLO) or Vector-Based Intensity Panning (VBIP) interpolation approaches.


Sign in / Sign up

Export Citation Format

Share Document