Different Inhibitory Inputs Onto Neostriatal Projection Neurons as Revealed by Field Stimulation

2005 ◽  
Vol 93 (2) ◽  
pp. 1119-1126 ◽  
Author(s):  
Fatuel Tecuapetla ◽  
Luis Carrillo-Reid ◽  
Jaime N. Guzmán ◽  
Elvira Galarraga ◽  
José Bargas

This work investigated if diverse properties could be ascribed to evoked inhibitory postsynaptic currents (IPSCs) recorded on rat neostriatal neurons when field stimulation was delivered at two different locations: the globus pallidus (GP) and the neostriatum (NS). Previous work stated that stimulation in the GP could antidromically excite projection axons from medium spiny neurons. This maneuver would predominantly activate the inhibitory synapses that interconnect spiny cells. In contrast, intrastriatal stimulation would preferentially activate inhibitory synapses provided by interneurons. This study shows that, in fact, intensity-amplitude experiments are able to reveal different properties for IPSCs evoked from these two locations (GP and NS). In addition, while all IPSCs evoked from the GP were always sensitive to ω-conotoxin GVIA (CaV2.22.2 or N-channel blocker), one-half of the inhibition evoked from the NS exhibited little sensitivity to ω-conotoxin GVIA. Characteristically, all ω-conotoxin GVIA–insensitive IPSCs exhibited strong paired pulse depression, whereas ω-conotoxin GVIA–sensitive IPSCs evoked from either the GP or the NS could exhibit short-time depression or facilitation. ω-Agatoxin TK (CaV2.12.1+ or P/Q-channel blocker) blocked IPSCs evoked from both locations. Therefore 1) distinct inhibitory inputs onto projection neostriatal cells can be differentially stimulated with field electrodes; 2) N-type Ca2+ channels are not equally expressed in inhibitory terminals activated in the NS; and 3) synapses that interconnect spiny neurons use both N- and P/Q-type Ca2+ channels.

2020 ◽  
Author(s):  
Adrienne C. Loewke ◽  
Adelaide R. Minerva ◽  
Alexandra B. Nelson ◽  
Anatol C. Kreitzer ◽  
Lisa A. Gunaydin

ABSTRACTThe dorsomedial prefrontal cortex (dmPFC) has been linked to approach-avoidance behavior and decision-making under conflict, key neural computations thought to be altered in anxiety disorders. However, the heterogeneity of efferent prefrontal projections has obscured identification of the specific top-down neural pathways regulating these anxiety-related behaviors. While the dmPFC-amygdala circuit has long been implicated in controlling reflexive fear responses, recent work suggests that this circuit is less important for avoidance behavior. We hypothesized that dmPFC neurons projecting to the dorsomedial striatum (DMS) represent a subset of prefrontal neurons that robustly encode and drive approach-avoidance behavior. Using fiber photometry recording during the elevated zero maze (EZM) task, we show heightened neural activity in prefrontal and fronto-striatal projection neurons, but not fronto-amydalar projection neurons, during exploration of the anxiogenic open arms of the maze. Additionally, through pathway-specific optogenetics we demonstrate that this fronto-striatal projection preferentially excites postsynaptic D1 receptor-expressing medium spiny neurons in the DMS and bidirectionally controls avoidance behavior. We conclude that this striatal-projecting subpopulation of prefrontal neurons regulates approach-avoidance conflict, supporting a model for prefrontal control of defensive behavior in which the dmPFC-amygdala projection controls reflexive fear behavior and the dmPFC-striatum projection controls anxious avoidance behavior. Our findings identify this fronto-striatal circuit as a valuable therapeutic target for developing interventions to alleviate excessive avoidance behavior in anxiety disorders.


1997 ◽  
Vol 77 (1) ◽  
pp. 427-434 ◽  
Author(s):  
Gabriele Radnikow ◽  
Jutta Rohrbacher ◽  
Ulrich Misgeld

Radnikow, Gabriele, Jutta Rohrbacher, and Ulrich Misgeld. Heterogeneity in use-dependent depression of inhibitory postsynaptic potentials in the rat neostriatum in vitro. J. Neurophysiol. 77: 427–434, 1997. “Minimal stimulation” was applied to evoke responses in an “all-or-none” fashion in presumed medium spiny neurons of rat neostriatal slices in the presence of antagonists for glutamatergic excitation. For comparison, responses were evoked in the same cells by compound stimulation. Bicuculline (30 μM) blocked responses evoked by minimal stimulation, indicating that they were γ-aminobutyric acid-A (GABAA)-receptor-mediated inhibitory postsynaptic potentials (IPSPs), whereas responses evoked by compound stimulation were only reduced in amplitude. Likewise, R(−)baclofen (1–20 μM) blocked IPSPs evoked by minimal stimulation in all but one cell. On the contrary, responses evoked by compound stimulation were always reduced in amplitude but never blocked. Paired-pulse depression (PPD) of averaged responses to minimal and compound stimulation was observed at a stimulus interval of 300 ms. The GABAB receptor antagonist CGP55845A (0.5 μM) had no effect on PPD evoked by compound stimulation but abolished PPD evoked by minimal stimulation. In a second set of experiments, the two stimulation paradigms were used to evoke responses in neostriatal slices continuously bathed in R(−)baclofen (10–20 μM). In R(−)baclofen a strong PPD was evoked by minimal and by compound stimulation. The amplitude of the response to compound stimulation increased on application of CGP55845A (0.5 μM). At the same time, PPD evoked by compound stimulation decreased. On the contrary, IPSP amplitude and PPD evoked by minimal stimulation remained unchanged. We conclude that two types of GABAergic terminals exist in the rat neostriatum, only one of which is regulated by GABAB receptors. However, the other class of terminals, not regulated by GABAB receptors, displays a much more pronounced PPD.


Author(s):  
K. Semba ◽  
H.C. Fibiger ◽  
S.R. Vincent

ABSTRACT:The major input and output pathways of the mammalian striatum have been well established. Recent studies have identified a number of neurotransmitters used by these pathways as well as by striatal interneurons, and have begun to unravel their synaptic connections. The major output neurons have been identified as medium spiny neurons which contain ɣ-aminobutyric acid (GABA), endogeneous opioids, and substance P. These neurons project to the pallidum and substantia nigra in a topographic and probably chemically organized manner. The major striatal afferents from the cerebral cortex, thalamus, and substantia nigra terminate, at least in part, on these striatal projection neurons. Striatal interneurons contain acetylcholine, GABA, and somatostatin plus neuropeptide Y, and appear to synapse on striatal projection neurons. In recent years, much activity has been directed to the neurochemical and hodological heterogeneities which occur at a macroscopic level in the striatum. This has led to the concept of a patch-matrix organization in the striatum.


2012 ◽  
Vol 108 (6) ◽  
pp. 1739-1751 ◽  
Author(s):  
Luis A. Tellez ◽  
Isaac O. Perez ◽  
Sidney A. Simon ◽  
Ranier Gutierrez

Neurons in the nucleus accumbens (NAc) have been shown to participate in several behavioral states, including feeding and sleep. However, it is not known if the same neuron participates in both states and, if so, how similar are the responses. In addition, since the NAc contains several cell types, it is not known if each type participates in the transitions associated with feeding and sleep. Such knowledge is important for understanding the interaction between two different neural networks. For these reasons we recorded ensembles of NAc neurons while individual rats volitionally transitioned between the following states: awake and goal directed, feeding, quiet-awake, and sleeping. We found that during both feeding and sleep states, the same neurons could increase their activity (be activated) or decrease their activity (be inactivated) by feeding and/or during sleep, thus indicating that the vast majority of NAc neurons integrate sleep and feeding signals arising from spatially distinct neural networks. In contrast, a smaller population was modulated by only one of the states. For the majority of neurons in either state, we found that when one population was excited, the other was inhibited, suggesting that they act as a local circuit. Classification of neurons into putative interneurons [fast-spiking interneurons (pFSI) and choline acetyltransferase interneurons (pChAT)] and projection medium spiny neurons (pMSN) showed that all three types are modulated by transitions to and from feeding and sleep states. These results show, for the first time, that in the NAc, those putative inhibitory interneurons respond similarly to pMSN projection neurons and demonstrate interactions between NAc networks involved in sleep and feeding.


Author(s):  
Jessica Arama ◽  
Karine Abitbol ◽  
Darren Goffin ◽  
Celine Fuchs ◽  
Talvinder S. Sihra ◽  
...  

1997 ◽  
Vol 78 (3) ◽  
pp. 1248-1255 ◽  
Author(s):  
Masashi Umemiya ◽  
Lynn A. Raymond

Umemiya, Masashi and Lynn A. Raymond. Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. J. Neurophysiol. 78: 1248–1255, 1997. γ-aminobutyric acid (GABA)-containing medium spiny neurons constitute ∼90% of the neuronal population in the neostriatum (caudate and putamen) and play an important role in motor programming. Cortical glutamatergic afferents provide the main excitatory drive for these neurons, whereas nigral dopaminergic neurons play a crucial role in regulating their activity. To further investigate the mechanisms underlying the dopaminergic modulation of medium spiny neuronal activity, we tested the effect of dopamine receptor agonists on excitatory synaptic transmission recorded from these neurons. Excitatory postsynaptic currents (EPSCs) were evoked by local stimulation and recorded from medium spiny neurons in postnatal rat striatal thin brain slices. Recordings were made using the whole cell patch-clamp technique under voltage clamp and conditions that selected for the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate- and kainate-type glutamate receptor-mediated components of the EPSC. Incubation of slices in 10 μM dopamine resulted in a 33 ± 11% (mean ± SE) decrease in the amplitude of evoked EPSCs, an effect that developed during seconds. The relative variability in amplitude of dopamine's effects on medium spiny neuron EPSCs may reflect activation of different receptor subtypes with opposing effects. In contrast to the results with dopamine, incubation of slices in SKF 38393, a D1-type dopamine receptor selective agonist, resulted in dose-dependent potentiation of the medium spiny neuron EPSC that developed during several minutes. At a concentration of 5 μM, SKF 38393 resulted in a 29 ± 4.5% increase in EPSC amplitude, an effect that was blocked by preincubation with the D1-selective antagonist, SCH 23390 (10 μM). On the other hand, 5 μM SKF 38393 had no apparent effect on medium spiny neuron currents activated by exogenous application of glutamate or kainate. However, because of the inherent limitations of rapid agonist perfusion in the brain slice preparation (caused by slow agonist diffusion and rapid glutamate receptor desensitization) and because of anatomic evidence that colocalizes D1 and glutamate receptors to medium spiny neuron dendrites, our results leave open the possibility that the effect of D1 receptor activation on the EPSC is mediated via modulation of postsynaptic glutamate receptor responsiveness. The significant potentiation by D1 receptor agonists of EPSC amplitude at the cortico-striatal medium spiny synapse that we observed, in part, may underlie the role of D1 receptors in facilitating medium spiny neuronal firing, with implications for understanding regulation of movement.


2013 ◽  
Vol 109 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Thomas G. Hawking ◽  
Todor V. Gerdjikov

Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45–90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.


Sign in / Sign up

Export Citation Format

Share Document