Organization of Recurrent Inhibition and Facilitation in Motor Nuclei Innervating Ankle Muscles of the Cat

1998 ◽  
Vol 79 (2) ◽  
pp. 778-790 ◽  
Author(s):  
Vladimir V. Turkin ◽  
Katrina S. Monroe ◽  
Thomas M. Hamm

Turkin, Vladimir V., Katrina S. Monroe, and Thomas M. Hamm. Organization of recurrent inhibition and facilitation in motor nuclei innervating ankle muscles of the cat. J. Neurophysiol. 79: 778–790, 1998. The distribution of recurrent inhibition and facilitation to motor nuclei of muscles that act at the cat ankle joint was compared with the locomotor activity and mechanical action of those muscles described in published studies. Emphasis was placed on motor nuclei whose muscles have a principal action about the abduction—adduction axis and the pretibial flexors: tibialis posterior (TP), peroneus longus (PerL), peroneus brevis (PerB), the anterior part of tibialis anterior (TA) and extensor digitorum longus (EDL). Most intracellular recordings in spinalized, unanesthetized decerebrate cats showed only inhibitory or excitatory responses to antidromic stimulation of peripheral nerves, but mixed effects were also seen. Recurrent effects among motor nuclei of ankle abductors and adductors were not distributed uniformly. TP motoneurons received recurrent inhibition from most other nuclei active in stance and stimulation of the TP nerve inhibited these motor nuclei. Although PerB motoneurons are also active during stance, they received primarily facilitation from most motor nuclei. PerL received mixtures of inhibition and facilitation from all sources. Stimulation of the nerves to PerL, PerB, and peroneus tertius (PerT) produced weak recurrent inhibition and facilitation, even in homonymous motoneurons and motoneurons of Ia synergists. The ankle flexors TA and EDL displayed different patterns of recurrent inhibition and facilitation. TA motoneurons received prominent homonymous inhibition and inhibition from semitendinosus (St). EDL, whose activity profile differs from TA and which also acts at the digits, did not receive strong recurrent inhibition from either TA or St, nor did stimulation of the EDL nerve produce much inhibition. The distribution of recurrent inhibition and facilitation is correlated with the pattern of locomotor activity, but with exceptions that suggest an influence of mechanical action, particularly in the antagonistic interactions between TP and PerB. The extended pattern of recurrent inhibition, the reduction or absence of inhibition produced by motor nuclei with individualized functions or digit function and the prevalence of facilitation suggest that the recurrent Renshaw system is organized into inhibitory and disinhibitory projections that participate in the control of sets of motor nuclei engaged in rhythmic and stereotyped movements.

1991 ◽  
Vol 66 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
R. K. Powers ◽  
M. D. Binder

1. The tension produced by the combined stimulation of two to four single motor units of the cat tibialis posterior muscle was compared with the algebraic sum of the tensions produced by each individual motor unit. Comparisons were made under isometric conditions and during imposed changes in muscle length. 2. Under isometric conditions, the tension resulting from combined stimulation of units displayed marked nonlinear summation, as previously reported in other cat hindlimb muscles. On average, the measured tension was approximately 20% greater than the algebraic sum of the individual unit tensions. However, small trapezoidal movements imposed on the muscle during stimulation significantly reduced the degree of nonlinear summation both during and after the movement. This effect was seen with imposed movements as small as 50 microns. 3. The degree of nonlinear summation was not dependent on motor unit size or on stimulus frequency. The effect was also unrelated to tendon compliance because the degree of nonlinear summation of motor unit forces was unaffected by the inclusion of different amounts of the external tendon between the muscle and the force transducer. 4. Our results support previous suggestions that the force measured when individual motor units are stimulated under isometric conditions is reduced by friction between the active muscle fibers and adjacent passive fibers. These frictional effects are likely to originate in the connective tissue matrix connecting adjacent muscle fibers. However, because these effects are virtually eliminated by small movements, linear summation of motor unit tensions should occur at low force levels under nonisometric conditions.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 63 (3) ◽  
pp. 395-403 ◽  
Author(s):  
T. M. Hamm

1. Recurrent inhibitory postsynaptic potentials (IPSPs) to and from motoneurons innervating the flexor digitorum longus (FDL) and flexor hallucis longus (FHL) muscles of the cat were investigated to determine whether recurrent inhibitory projections involving these motoneurons are similar--as would be consistent with the Ia and anatomic synergism of FDL and FHL--or are dissimilar, as are the activities of these muscles during locomotion (O'Donovan et al. 1982). 2. Composite recurrent IPSPs were recorded in several species of motoneurons innervating hindlimb muscles in response to stimulation of a number of muscle nerves in cats allowed to become unanesthetized after ischemic decapitation. 3. No recurrent IPSPs from stimulation of the FDL nerve were observed in motoneurons innervating FDL, FHL, lateral gastrocnemius-soleus (LG-S), medial gastrocnemius (MG), plantaris (Pl), tibialis anterior (TA), or extensor digitorum longus (EDL). 4. The recurrent IPSPs produced by stimulation of FHL were larger and found more frequently in LG-S than in FDL motoneurons. Recurrent inhibition from FHL was also greater in Pl than in FDL motoneurons. 5. The recurrent IPSPs produced by stimulation of LG-S, PL, and MG were larger in FHL than in FDL motoneurons, and those from LG-S and MG were found more frequently in FHL than in FDL motoneurons. 6. Stimulation of the TA nerve produces recurrent IPSPs in FDL but not in FHL motoneurons. A few FDL and FHL cells (6 of 23 and 9 of 34, respectively) received small (less than 0.5 mV) recurrent IPSPs from stimulation of the EDL nerve.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 47 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Tatsuyuki TSUBOMURA ◽  
Kazuyoshi KURAHASHI ◽  
Toshihiro OKAMOTO ◽  
Motohatsu FUJIWARA

1982 ◽  
Vol 96 (1) ◽  
pp. 107-124
Author(s):  
JEFF GOLDBERG ◽  
KEN LUKOWIAK

The gill withdrawal reflex (GWR) and its subsequent habituation can be evoked by tactile stimulation of the siphon or gill when the CNS is either intact or removed. It has been suggested that the neural circuits that mediate the GWR evoked at these two loci are parallel and independent. We provide three lines of evidence which show that these circuits interact and, therefore, comprise a single integrated system. Firtly, siphon and gill stimulation evoked similar excitatory responses in the central gill motor neurones. Secondly, the GWR habituated by repetitive stimulation at one locus was dishabituated by stimulation of the other locus. Thirdly, transfer of habituation occurred. Although the transfer was seen neurally at the level of central gill motor neurones, transfer of habituation also occurred after the CNS was removed. Therefore, the neuronal circuits mediating the reflexes evoked at the siphon and gill interact within both the CNS and PNS. The PNS is largely responsible for mediating this gill behaviour that is based on such interactions, while the CNS provides suppressive and facilitatory plasticity to these responses to enable Aplysia to better adapt to a changing environment.


1988 ◽  
Vol 65 (1) ◽  
pp. 385-392 ◽  
Author(s):  
F. Bongianni ◽  
M. Corda ◽  
G. Fontana ◽  
T. Pantaleo

The effects of superior laryngeal nerve (SLN) stimulation on the activity of the expiratory muscles and medullary expiration-related (ER) neurons were investigated in 24 pentobarbital-anesthetized cats. In some experiments the animals were also paralyzed and artificially ventilated. Sustained tetanic stimulation of SLN consistently caused an apneic response associated with the appearance of tonic CO2-dependent activity in the expiratory muscles and in ER neurons located in the caudal ventral respiratory group (VRG) and the Botzinger complex. Single shocks or brief tetani at the same stimulation intensities failed to evoke excitatory responses in the expiratory muscles and in the vast majority of ER neurons tested. At higher stimulation strengths, single shocks or short tetani elicited excitatory responses in the expiratory muscles (20- to 35-ms latency) and in the majority of ER neurons of the caudal VRG (7.5- to 15.5-ms latency). These responses were obtained only during the expiratory phase and proved to be CO2 independent. On the contrary, only inhibitory responses were evoked in the activity of Botzinger complex neurons. The observed tonic expiratory activity most likely represents a disinhibition phenomenon due to the suppression of inspiratory activity; activation of expiratory muscles at higher stimulation intensities appears to be a polysynaptic reflex mediated by ER neurons of the caudal VRG but not by Botzinger complex neurons.


1985 ◽  
Vol 53 (2) ◽  
pp. 497-517 ◽  
Author(s):  
R. K. Powers ◽  
M. D. Binder

To characterize the oligosynaptic group I afferent input to the cat medial gastrocneumius (MG) motoneuron pool, the medial branch of the tibial nerve (MTIB: flexor digitorum and hallucis longus, popliteus, tibialis posterior and interosseous nerves), the nerves to flexor digitorum and hallucis longus (FDHL), or the nerves to the quadriceps muscles (QUAD) were stimulated at submaximal group I strength while recording intracellularly from MG motoneurons. Since previous work indicates that stimulation of these nerves at group I strength produces no significant monosynaptic Ia excitation or Renshaw inhibition of MG motoneurons, group I effects were assumed to be predominantly, though not exclusively, due to the action of Ib-fibers. Evidence supporting this assumption is presented in the following paper. MTIB, FDHL, and QUAD postsynaptic potentials (PSPs) were most commonly inhibitory. Since the MTIB, FDHL, and QUAD nerves are composed predominantly of fibers innervating muscles with extensor action, their inhibitory effect on MG motoneurons is consistent with previous findings that stimulation of Ib-afferents in nerves to extensor muscles produces di- and trisynaptic inhibition of extensor motoneurons. However, excitatory effects were observed in about one third of the motoneurons, indicating that oligosynaptic group I input is not homogeneously distributed within the MG motoneuron pool. Variations in QUAD, FDHL, and MTIB PSP pattern and amplitude were correlated with variations in the PSP pattern evoked by stimulation of the sural nerve: excitatory oligosynaptic group I PSPs generally appeared in motoneurons receiving excitatory cutaneous (sural nerve) input, whereas inhibitory PSPs generally appeared in motoneurons receiving some inhibitory cutaneous input and were largest in motoneurons receiving predominantly inhibition from the sural nerve. These variations in QUAD, FDHL, and MTIB PSP pattern and amplitude were not due to variations in resting potential and were only partly due to variations in intrinsic motoneuron properties or motoneuron "type." Our results indicate that activation of these cutaneous and group I muscle afferents can exert similar effects on the MG motoneuron pool. Moreover, the presence of a strong correlation between the distributions of cutaneous and oligosynaptic group I PSPs within a single motoneuron pool is consistent with the results of previous studies that have shown that some of the input to motoneurons from these peripheral afferents is mediated through common interneurons.


1983 ◽  
Vol 245 (6) ◽  
pp. R811-R819 ◽  
Author(s):  
D. F. Cechetto ◽  
F. R. Calaresu

Spontaneously firing units in the region of parabrachial nuclei (PB) and Kolliker-Fuse nuclei (KF) of 19 chloralose-anesthetized cats were monitored for changes in firing frequency during electrical stimulation of carotid sinus (CSN) and aortic depressor (ADN) nerves, of central nucleus of the amygdala (ACE), and of paraventricular nuclei of the hypothalamus (PVH). In the ipsilateral PB 64 of 189 and in the contralateral PB 9 of 103 units responded to CSN stimulation; 18 of 185 ipsilaterally and 7 of 97 contralaterally responded to ADN stimulation. Responses were primarily excitatory, and units were located primarily in the ventrolateral portion of the PB. Only 9 of 267 units responded to stimulation of both CSN and ADN. Stimulation of the ACE and PVH antidromically activated 9 and 7 units, respectively, in PB and approximately half of these also responded to buffer nerve stimulation. In the ipsilateral PB 56 of 207 and in the contralateral PB 11 of 103 units responded orthodromically to ACE stimulation, and 23 of 177 ipsilaterally and 2 of 103 contralaterally responded orthodromically to PVH stimulation with primarily excitatory responses and were located primarily in the ventrolateral portion of the PB and KF. Of these units approximately half also responded to buffer nerve stimulation. These results suggest an important role for PB-KF in mediating ascending and descending cardiovascular and respiratory control signals.


1999 ◽  
Vol 81 (5) ◽  
pp. 2485-2492 ◽  
Author(s):  
Alan J. Sokoloff ◽  
Sondra G. Siegel ◽  
Timothy C. Cope

Recruitment order among motoneurons from different motor nuclei. The principles by which motoneurons (MNs) innervating different multiple muscles are organized into activity are not known. Here we test the hypothesis that coactivated MNs belonging to different muscles in the decerebrate cat are recruited in accordance with the size principle, i.e., that MNs with slow conduction velocity (CV) are recruited before MNs with higher CV. We studied MN recruitment in two muscle pairs, the lateral gastrocnemius (LG) and medial gastrocnemius (MG) muscles, and the MG and posterior biceps femoris (PBF) muscles because these pairs are coactivated reliably in stretch and cutaneous reflexes, respectively. For 29/34 MG-LG pairs of MNs, the MN with lower CV was recruited first either in all trials (548/548 trials for 22 pairs) or in most trials (225/246 trials for 7 pairs), whether the MG or the LG MN in a pair was recruited first. Intertrial variability in the force thresholds of MG and LG MNs recruited by stretch was relatively low (coefficient of variation = 18% on average). Finally, punctate stimulation of the skin over the heel recruited 4/4 pairs of MG-LG MNs in order by CV. By all of these measures, recruitment order is as consistent among MNs from these two ankle muscles as it is for MNs supplying the MG muscle alone. For MG-PBF pairings, the MN with lower CV was recruited first in the majority of trials for 13/24 pairs and in reverse order for 9/24 pairs. The recruitment sequence of coactive MNs supplying the MG and PBF muscles was, therefore, random with respect to axonal conduction velocity and not organized as predicted by the size principle. Taken together, these findings demonstrate for the first time, that the size principle can extend beyond the boundaries of a single muscle but does not coordinate all coactive muscles in a limb.


2004 ◽  
Vol 286 (3) ◽  
pp. R451-R464 ◽  
Author(s):  
Hakan S. Orer ◽  
Gerard L. Gebber ◽  
Shaun W. Phillips ◽  
Susan M. Barman

We tested the hypothesis that blockade of N-methyl-d-aspartate (NMDA) and non-NMDA receptors on medullary lateral tegmental field (LTF) neurons would reduce the sympathoexcitatory responses elicited by electrical stimulation of vagal, trigeminal, and sciatic afferents, posterior hypothalamus, and midbrain periaqueductal gray as well as by activation of arterial chemoreceptors with intravenous NaCN. Bilateral microinjection of a non-NMDA receptor antagonist into LTF of urethane-anesthetized cats significantly decreased vagal afferent-evoked excitatory responses in inferior cardiac and vertebral nerves to 29 ± 8 and 24 ± 6% of control ( n = 7), respectively. Likewise, blockade of non-NMDA receptors significantly reduced chemoreceptor reflex-induced increases in inferior cardiac (from 210 ± 22 to 129 ± 13% of control; n = 4) and vertebral nerves (from 253 ± 41 to 154 ± 20% of control; n = 7) and mean arterial pressure (from 39 ± 7 to 21 ± 5 mmHg; n = 8). Microinjection of muscimol, but not an NMDA receptor antagonist, caused similar attenuation of these excitatory responses. Sympathoexcitatory responses to the other stimuli were not attenuated by microinjection of a non-NMDA receptor antagonist or muscimol into LTF. In fact, excitatory responses elicited by stimulation of trigeminal, and in some cases sciatic, afferents were enhanced. These data reveal two new roles for the LTF in control of sympathetic nerve activity in cats. One, LTF neurons are involved in mediating sympathoexcitation elicited by activation of vagal afferents and arterial chemoreceptors, primarily via activation of non-NMDA receptors. Two, non-NMDA receptor-mediated activation of other LTF neurons tonically suppresses transmission in trigeminal-sympathetic and sciatic-sympathetic reflex pathways.


Sign in / Sign up

Export Citation Format

Share Document