Pattern of Cardiorespiratory Afferent Convergence to Solitary Tract Neurons Driven by Pulmonary Vagal C-Fiber Stimulation in the Mouse

1998 ◽  
Vol 79 (5) ◽  
pp. 2365-2373 ◽  
Author(s):  
Julian F. R. Paton

Paton, Julian F. R. Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse. J. Neurophysiol. 79: 2365–2373, 1998. The central integration of signals from pulmonary vagal C-fibers (or type-J receptors) with those arising from cardiac, peripheral chemoreceptor, and baroreceptor afferents to neurons within the nucleus of the solitary tract (NTS) was studied in an arterially perfused working heart–brain stem preparation of adult mouse. Pulmonary vagal C-fibers were excited by right atrial injection of phenylbiguanide (PBG) while cardiac receptors were stimulated by left ventricular injection of veratridine (1–3 μg/kg) or mechanically by distension of the left ventricle (20–50 μl perfusate) using an indwelling cannula. Carotid body chemoreceptors were activated by aortic injection of Na cyanide, whereas baroreceptors were stimulated by increasing arterial perfusion pressure. Stimulation of pulmonary C-fibers and cardiac, chemo-, and baroreceptors all produced a reflex bradycardia (23–133 bpm). Central respiratory activity, as recorded from the phrenic nerve, was depressed by stimulating pulmonary C-fibers and cardiac and baroreceptors but enhanced in amplitude and frequency during chemoreceptor stimulation. Twenty-seven NTS neurons were excited and three were inhibited after pulmonary C-fiber stimulation displaying decrementing discharges with a peak firing frequency of up to 42 Hz (15 ± 2.2 Hz, mean ± SE) that lasted for 8.8 ± 0.9 s. These responses occurred <1 s from the end of the PBG injection that was within the pulmonary circulation time. None of these cells responded to increases in right atrial pressure. All cells excited by PBG were also driven synaptically after electrical stimulation of the ipsilateral cervical vagus nerve at a latency of 32.9 ± 3.2 ms (range 20–62 ms). None of these neurons had ongoing activity related to central respiratory activity. Convergence from cardiorespiratory afferents to 21 neurons driven by pulmonary C-fibers was tested. Twenty-five percent of cells were selectively excited by chemical stimulation of cardiac receptors alone, 19% were driven by peripheral chemoreceptors, and 38% responded to both cardiac and chemoreceptor activation. In contrast, only 13% of the cells activated by PBG injection responded to stimulation of baroreceptors and only 6% to cardiac mechanoreceptor stimulation. None of these neurons were activated by increasing right atrial pressure. The data indicate a high proportion of afferent convergence from pulmonary C-fibers, cardiac receptors, and peripheral chemoreceptors in the NTS. However, these neurons appear not to integrate inputs from cardiovascular mechanoreceptors. The significance of the data is discussed in relation to pathological disease states such as pulmonary congestion and cardiac failure.

1998 ◽  
Vol 79 (5) ◽  
pp. 2374-2382 ◽  
Author(s):  
L. Silva-Carvalho ◽  
J.F.R. Paton ◽  
I. Rocha ◽  
G. E. Goldsmith ◽  
K. M. Spyer

Silva-Carvalho, L., J.F.R. Paton, I. Rocha, G. E. Goldsmith and K. M. Spyer. Convergence properties of solitary tract neurons responsive to cardiac receptor stimulation in the anesthetized cat. J. Neurophysiol. 79: 2374–2382, 1998. The convergence pattern of cardiac receptors, pulmonary C-fibers, carotid chemoreceptor, and baroreceptor afferents onto neurons within the nucleus of the solitary tract (NTS) was studied in the anesthetized (pentobarbitone sodium, 40 mg/kg,) paralyzed and artificially ventilated cat. Extra- and intracellular recordings were made from NTS neurons while stimulating both cardiac receptors by aortic root injections of veratridine (1–3 μg/kg) and pulmonary C-fibers by a right atrial injection of phenylbiguanide (10–20 μg/kg). The ipsilateral carotid body was stimulated by using arterial injection of CO2-saturated bicarbonate solution, whereas inflation of the ipsilateral carotid sinus was used to activate baroreceptors. The ipsilateral cardiac vagal branch, cervical vagus, and carotid sinus nerves were stimulated electrically (1 Hz, 0.2–1 ms, 1–35 V). In 78 NTS neurons recorded either extracellularly ( n = 47) or intracellularly ( n = 31), electrical stimulation of the cardiac branch of the vagus nerve evoked synaptic potentials (spikes and/or excitatory postsynaptic potentials) with an onset latency between 4 and 220 ms. Some neurons displayed both short and long latency inputs(15.5 ± 1.8 and 160.0 ± 8.5 ms; n = 14). Of these 78 neurons, 24 responded to veratridine stimulation of cardiac receptors (i.e., cardioreceptive neurons) by exhibiting an augmenting–decrementing discharge of 37 ± 4 s in duration with a peak frequency of 30 ± 5 Hz. Convergence from other cardiorespiratory receptors was noted involving either carotid chemoreceptors ( n = 7) or pulmonary C-fibers ( n = 4) or from both carotid chemoreceptors and pulmonary C-fibers ( n = 6). In contrast, only one cardioreceptive NTS neuron was activated by distension of the carotid sinus. Recording sites recovered were confined to the medial NTS at the level of the area postrema and extended caudally into the commissural subnucleus. Our results indicate a convergence of carotid chemoreceptor and pulmonary C-fiber afferent inputs to cardioreceptive NTS neurons. With the paucity of baroreceptor inputs to these neurons it is suggested that sensory integration within the NTS may reflect regulatory versus defensive or protective reflex control.


1985 ◽  
Vol 58 (3) ◽  
pp. 907-910 ◽  
Author(s):  
H. D. Schultz ◽  
A. M. Roberts ◽  
C. Bratcher ◽  
H. M. Coleridge ◽  
J. C. Coleridge ◽  
...  

Stimulation of bronchial C-fibers evokes a reflex increase in secretion by tracheal submucosal glands, but the influence of pulmonary C-fibers on tracheal gland secretion is uncertain. In anesthetized dogs with open chests, we sprayed powdered tantalum on the exposed mucosa of a segment of the upper trachea to measure the rate of secretion by submucosal glands. Secretions from the gland ducts caused elevations (hillocks) in the tantalum layer. We counted hillocks at 10-s intervals for 60 s before and 60 s after we injected capsaicin (10–20 micrograms/kg) into the right atrium to stimulate pulmonary C-fiber endings. Right atrial injection of capsaicin increased the rate of hillock formation fourfold, but left atrial injection had no significant effect. The response was abolished by cutting the vagus nerves or cooling them to 0 degree C. We conclude that the reflex increase in tracheal submucosal gland secretion evoked by right atrial injection of capsaicin was initiated as capsaicin passed through the pulmonary vascular bed, and hence that pulmonary C-fibers, like bronchial C-fibers, reflexly increase airway secretion.


1985 ◽  
Vol 59 (5) ◽  
pp. 1487-1494 ◽  
Author(s):  
J. R. Coast ◽  
S. S. Cassidy

It has been suggested that pulmonary C-fiber stimulation is responsible for the rapid shallow breathing that accompanies pulmonary edema. However, pulmonary C-fiber stimulation also causes apnea. To determine whether it was possible for both responses to occur from one stimulus, we infused varying concentrations of capsaicin (a compound that selectively stimulates C-fiber receptors in the dog) into an in situ vascularly isolated dog lung and measured rates and strengths of diaphragmatic contractions with a strain gauge sutured to the diaphragm and electromyogram electrodes implanted in the diaphragm. There was a dose response to capsaicin in that increased doses were related directly with the duration of cessation of diaphragmatic contractions (2–100 s) and inversely with the latency from the start of stimulation to the beginning of the cessation of diaphragmatic contractions (100–5 s). There was no evidence, however, of rapid shallow breathing in this set of experiments. Either a gradual return to normal rate from prolonged contraction intervals or no change in contraction rate was seen, depending on capsaicin concentration. We conclude that the primary diaphragmatic response to pulmonary C-fiber stimulation is a cessation of diaphragmatic contractions rather than rapid shallow contractions.


1988 ◽  
Vol 66 (6) ◽  
pp. 776-782 ◽  
Author(s):  
K. Ravi ◽  
N. B. Dev

The effects of metoclopramide on the reflex cardiorespiratory responses elicited by stimulation of pulmonary J receptors by right atrial injections of phenyl diguanide (PDG), 5-hydroxytryptamine (5-HT), and capsaicin were investigated in anesthetized spontaneously breathing cats. It was observed that while metoclopramide blocked the responses to PDG and 5-HT injections, it spared the responses to capsaicin injections. Similarly, metoclopramide was without effect on the reflex responses following activation of pulmonary C-fiber receptors (J receptors) by capsaicin in dogs. Reflex cardiorespiratory responses elicited by left atrial injections of PDG and 5-HT, owing to stimulation of cardiac receptors in cats, and reflex responses following right or left atrial injections of PDG and 5-HT, owing to stimulation of aortic chemoreceptors in dogs, were also found to be blocked by metoclopramide. Afferent impulse activity recorded from aortic chemoreceptors of dogs showed that while metoclopramide depressed the excitatory effect of PDG and 5-HT on them, it did not produce any effect on their spontaneous activity and their excitation by hypoxia. The results from the reflex studies show that metoclopramide is capable of antagonizing the reflex responses following the activation of the cardiopulmonary afferents by PDG and 5-HT. Based on the effects on aortic chemoreceptor afferents, it is suggested that PDG, 5-HT, and metoclopramide may be acting upon the regenerative region of the sensory endings.


1992 ◽  
Vol 72 (2) ◽  
pp. 770-778 ◽  
Author(s):  
H. M. Coleridge ◽  
J. C. Coleridge ◽  
J. F. Green ◽  
G. H. Parsons

We investigated changes in bronchial blood flow (Qbr) associated with capsaicin-induced stimulation of pulmonary C-fibers in seven anesthetized and two unanesthetized sheep. A Doppler flow probe chronically implanted around the common bronchial artery provided a signal (delta F, kHz) linearly related to bronchial arterial blood velocity (Vbr, cm/s), which was proportional to Qbr. An index of bronchial vascular conductance (Cbr, in arbitrary units) was calculated as the ratio of Vbr to systemic arterial pressure (Pa). Right atrial injection of capsaicin evoked a prompt pulmonary chemoreflex (apnea, bradycardia, and hypotension), with immediate increases in Vbr (average +34%) and Cbr (+63%) that reached a maximum approximately 7 s after the injection. A second increase in Vbr, but not in Cbr, occurred approximately 12 s later, coinciding with an increase in Pa. Vagal cooling (0 degrees C) prevented the pulmonary chemoreflex; it also abolished the immediate increases in Vbr and Cbr in four of six sheep and substantially reduced them in two sheep; it did not affect the late increases in Vbr and Pa. Results after atropine indicated that the immediate increases in Vbr and Cbr were mainly cholinergic. In two sheep a small residual vasodilation survived combined cholinergic and adrenergic blockade and may have been due to peripheral release of neurokinins.


1989 ◽  
Vol 66 (5) ◽  
pp. 2032-2038 ◽  
Author(s):  
L. Y. Lee ◽  
Y. R. Kou ◽  
D. T. Frazier ◽  
E. R. Beck ◽  
T. E. Pisarri ◽  
...  

Inhalation of cigarette smoke into the lower airway via a tracheostomy evokes immediate apnea, bradycardia, and systemic hypotension in dogs. These responses can still be evoked when conduction in myelinated vagal fibers is blocked preferentially by cooling but are abolished by vagotomy, suggesting that they are mediated by afferent vagal C-fibers. To examine this possibility, we recorded impulses in pulmonary C-fibers in anesthetized, open-chest dogs and delivered 120 ml cigarette smoke to the lungs in a single ventilatory cycle. Pulmonary C-fibers were stimulated within 1 or 2 s of the delivery of smoke generated by high-nicotine cigarettes, activity increasing from 0.3 +/- 0.1 to a peak of 12.6 +/- 1.3 (SE) impulses/s, (n = 60); the evoked discharge usually lasted 3–5 s. Smoke generated by low-nicotine cigarettes evoked a milder stimulation in 33% of pulmonary C-fibers but did not significantly affect the overall firing frequency (peak activity = 2.2 +/- 1.1 impulses/s, n = 36). Hexamethonium (0.7–1.2 mg/kg iv) prevented C-fiber stimulation by high-nicotine cigarette smoke (n = 12) but not stimulation by right atrial injection of capsaicin. We conclude that pulmonary C-fibers are stimulated by a single breath of cigarette smoke and that nicotine is the constituent responsible.


2005 ◽  
Vol 98 (2) ◽  
pp. 620-628 ◽  
Author(s):  
Ching Jung Lai ◽  
Ting Ruan ◽  
Yu Ru Kou

Circulatory endotoxin can stimulate vagal pulmonary C fibers and rapidly adapting receptors (RARs) in rats, but the underlying mechanisms are not clear. We investigated the involvement of hydroxyl radicals and cyclooxygenase metabolites in the stimulation of C fibers and RARs by circulatory endotoxin (50 mg/kg) in 112 anesthetized, paralyzed, and artificially ventilated rats. In rats pretreated with the vehicle, endotoxin stimulated C fibers and RARs and caused a slight increase in total lung resistance (Rl) and a decrease in dynamic lung compliance. In rats pretreated with dimethylthiourea (a hydroxyl radical scavenger) alone, indomethacin (a cyclooxygenase inhibitor) alone, or a combination of the two, C-fiber and RAR responses [C fiber: change (Δ) = −62, −79, and −85%; RAR: Δ = −80, −84, and −84%, respectively] were reduced, and the Rl response was prevented. The suppressive effects of a combination of dimethylthiourea and indomethacin on the C-fiber and RAR responses were not superior to indomethacin alone. In rats pretreated with isoproterenol (a bronchodilator), the C-fiber response was not significantly affected (Δ = −26%), the RAR response was reduced (Δ = −88%), and the Rl response was prevented. None of these pretreatments affected the dynamic lung compliance response. These results suggest that 1) both hydroxyl radicals and cyclooxygenase metabolites are involved in the endotoxin-induced stimulation of C fibers and RARs, and 2) the involvement of these two metabolites in the C-fiber stimulation may be due to their chemical effects, whereas that in the RAR stimulation may be due to their bronchoconstrictive effects.


2001 ◽  
Vol 280 (1) ◽  
pp. R115-R122 ◽  
Author(s):  
Elvire Gouze-Decaris ◽  
Lionel Philippe ◽  
Alain Minn ◽  
Philippe Haouzi ◽  
Pierre Gillet ◽  
...  

This study was designed to investigate the pathways involved in neurogenic-mediated articular cartilage damage triggered by a nonsystemic distant subcutaneous or intra-articular inflammation. The cartilage damage was assessed 24 h after subcutaneous or intra-articular complete Freund's adjuvant (CFA) injection measuring patellar proteoglycan (PG) synthesis (ex vivo [Na2 35SO4] incorporation) in 96 Wistar rats. Unilateral subcutaneous or intra-articular injection of CFA induced significant decrease (25–29%) in PG synthesis in both patellae. Chronic administration of capsaicin (50 mg · kg−1 · day−1 during 4 days), which blunted the normal response of C fiber stimulation, prevented the bilateral significant decrease in cartilage synthesis. Similarly, intrathecal injection of MK-801 (10 nmol/day during 5 days), which blocked the glutamatergic synaptic transmission at the dorsal horn of signal originating in primary afferent C fibers, eliminated the CFA-induced PG synthesis decrease in both patellae. Chemical sympathectomy, induced by guanethidine (12.5 mg · kg−1 · day−1 during 6 wk), also prevented PG synthesis alteration. Finally, compression of the spinal cord at the T3-T5 level had a similar protective effect on the reduction of [Na2 35SO4] incorporation. It is concluded that the signal that triggers articular cartilage synthesis damage induced by a distant local inflammation 1) is transmitted through the afferent C fibers, 2) makes glutamatergic synaptic connections with the preganglionic neurons of the sympathetic system, and 3) involves spinal and supraspinal pathways.


1994 ◽  
Vol 267 (6) ◽  
pp. H2398-H2406 ◽  
Author(s):  
H. L. Pan ◽  
G. L. Stahl ◽  
S. V. Rendig ◽  
O. A. Carretero ◽  
J. C. Longhurst

Abdominal ischemia and reperfusion reflexly activate the cardiovascular system. In the present study, we evaluated the role of endogenously produced bradykinin (BK) in the stimulation of ischemically sensitive visceral afferents. Single-unit activity of abdominal visceral C fiber afferents was recorded from the right thoracic sympathetic chain of anesthetized cats during 5 min of abdominal ischemia. Abdominal ischemia increased the portal venous plasma BK level from 49 +/- 10 to 188 +/- 66 pg/ml (P < 0.05). Injection of BK (1 microgram/kg ia) into the descending aorta significantly increased impulse activity (0.88 +/- 0.16 impulses/s) of 10 C fibers, whereas a kinin B1-receptor agonist, des-Arg9-BK (1 microgram/kg), did not alter the discharge rate. Inhibition of kininase II activity with captopril (4 mg/kg i.v.) potentiated impulse activity of 14 ischemically sensitive C fibers (0.44 +/- 0.09 vs. precaptopril, 0.33 +/- 0.08 impulses/s; P < 0.05). In addition, a kinin B2-receptor antagonist (NPC-17731; 40 micrograms/kg i.v.) attenuated activity of afferents during ischemia (0.39 +/- 0.08 vs. pre-NPC-17731, 0.72 +/- 0.13 impulses/s; P < 0.05) and eliminated the response of 10 C fibers to BK. Another kinin B2-receptor antagonist, Hoe-140 (30 micrograms/kg iv), had similar inhibitory effects on six other ischemically sensitive C fibers. In 15 separate cats treated with aspirin (50 mg/kg i.v.), Hoe-140 (30 micrograms/kg i.v.) attenuated impulse activity of only 3 of 16 ischemically sensitive C fibers. These data suggest that BK produced during abdominal ischemia contributes to the stimulation of ischemically sensitive visceral C fiber afferents through kinin B2 receptors.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 60 (6) ◽  
pp. 1967-1981 ◽  
Author(s):  
W. S. Ammons

1. Studies were done to characterize responses of spinal neurons backfired from the ventrolateral medulla to renal and somatic stimuli. Experiments were performed on 31 cats that were anesthetized with alpha-chloralose. Sixty-six spinal neurons were antidromically activated from the area of the lateral reticular nucleus or the ventrolateral reticular formation just rostral to the lateral reticular nucleus contralateral to the recording site. These cells could not be backfired from the medial reticular formation or from the spinothalamic tract just caudal to the thalamus. 2. Cells were located in laminae I, V, and VII of the T12-L2 segments. Antidromic conduction velocities averaged 35.9 +/- 7.2 m/s. Conduction velocities were unrelated to the projection site or laminar location of the cells. Termination sites of 21 cells were located in antidromic mapping experiments. Terminals were localized to the ventrolateral reticular formation, including the lateral reticular nucleus. 3. Responses to electrical stimulation of the renal nerves were always excitatory. Stimulation of renal A-delta-fibers excited 33 cells. These cells failed to respond to stimulation of renal C-fibers. The other 33 cells responded to both A-delta- and C-fiber stimulation. Latencies to A-delta-fiber stimulation averaged 9 +/- 2 ms, whereas latencies to C-fiber stimulation averaged 57 +/- 10 ms. 4. Renal mechanoreceptors were activated by occlusion of the renal vein or upper portion of the ureter. Renal vein occlusion excited 14 of 32 cells tested. Activity increased from 6 +/- 2 to 14 +/- 4 spike/s. Ureteral occlusion increased activity of 19 of 32 cells from 7 +/- 2 to 16 +/- 5 spikes/s. Cells responding to one of the mechanical stimuli were significantly more likely to receive A-delta-and C-fiber input compared with nonresponding cells. Nonresponders were more likely than responders to receive only A-delta input. 5. All cells received somatic input in addition to renal input. Twelve cells were classified as wide dynamic range, 46 as high threshold, and 8 as Deep. Somatic receptive fields most often included skin and muscle of the left flank and abdomen. Thirty-two cells had bilateral receptive fields, and 22 had inhibitory fields in addition to excitatory fields. 6. These data show that spinal neurons projecting to the ventrolateral medulla receive convergent inputs from the kidney and somatic structures. These cells may participate in a variety of functions including autonomic reflexes of renal origin.


Sign in / Sign up

Export Citation Format

Share Document