Functional Organization of Squirrel Monkey Primary Auditory Cortex: Responses to Pure Tones

2001 ◽  
Vol 85 (4) ◽  
pp. 1732-1749 ◽  
Author(s):  
Steven W. Cheung ◽  
Purvis H. Bedenbaugh ◽  
Srikantan S. Nagarajan ◽  
Christoph E. Schreiner

The spatial organization of response parameters in squirrel monkey primary auditory cortex (AI) accessible on the temporal gyrus was determined with the excitatory receptive field to pure tone stimuli. Dense, microelectrode mapping of the temporal gyrus in four animals revealed that characteristic frequency (CF) had a smooth, monotonic gradient that systematically changed from lower values (0.5 kHz) in the caudoventral quadrant to higher values (5–6 kHz) in the rostrodorsal quadrant. The extent of AI on the temporal gyrus was ∼4 mm in the rostrocaudal axis and 2–3 mm in the dorsoventral axis. The entire length of isofrequency contours below 6 kHz was accessible for study. Several independent, spatially organized functional response parameters were demonstrated for the squirrel monkey AI. Latency, the asymptotic minimum arrival time for spikes with increasing sound pressure levels at CF, was topographically organized as a monotonic gradient across AI nearly orthogonal to the CF gradient. Rostral AI had longer latencies (range = 4 ms). Threshold and bandwidth co-varied with the CF. Factoring out the contribution of the CF on threshold variance, residual threshold showed a monotonic gradient across AI that had higher values (range = 10 dB) caudally. The orientation of the threshold gradient was significantly different from the CF gradient. CF-corrected bandwidth, residual Q10, was spatially organized in local patches of coherent values whose loci were specific for each monkey. These data support the existence of multiple, overlying receptive field gradients within AI and form the basis to develop a conceptual framework to understand simple and complex sound coding in mammals.

2005 ◽  
Vol 94 (2) ◽  
pp. 1299-1311 ◽  
Author(s):  
Benoit Godey ◽  
Craig A. Atencio ◽  
Ben H. Bonham ◽  
Christoph E. Schreiner ◽  
Steven W. Cheung

The squirrel monkey twitter call is an exemplar of a broad class of species-specific vocalizations that contain naturally voiced frequency-modulated (FM) sweeps. To investigate how this prominent communication call element is represented in primary auditory cortex (AI), neuronal receptive field properties to pure-tone and synthetic, logarithmically spaced FM-sweep stimuli in 3 barbiturate-anesthetized squirrel monkeys are studied. Responses to pure tones are assessed by using standard measures of frequency response areas, whereas responses to FM sweeps are classified according to direction selectivity, best speed, and speed tuning preferences. Most neuronal clusters respond to FM sweeps in both directions and over a range of FM speeds. Center frequencies calculated from the average of high and low trigger frequency edges of FM response profiles are highly correlated with pure-tone characteristic frequencies (CFs). However, bandwidth estimates are only weakly correlated with their pure-tone counterparts. CF and direction selectivity are negatively correlated. Best speed maps reveal idiosyncratically positioned spatial aggregation of similar values. In contrast, direction selectivity maps show unambiguous spatial organization. Neuronal clusters selective for upward-directed FM sweeps are located in ventral–caudal AI, where CFs range from 0.5 to 1 kHz. Combinations of pure-tone and FM response parameters form 2 significant factors to account for response variations. These results are interpreted in the context of earlier FM investigations and neuronal encoding of dynamic sounds.


2008 ◽  
Vol 100 (3) ◽  
pp. 1622-1634 ◽  
Author(s):  
Ling Qin ◽  
JingYu Wang ◽  
Yu Sato

Previous studies in anesthetized animals reported that the primary auditory cortex (A1) showed homogenous phasic responses to FM tones, namely a transient response to a particular instantaneous frequency when FM sweeps traversed a neuron's tone-evoked receptive field (TRF). Here, in awake cats, we report that A1 cells exhibit heterogeneous FM responses, consisting of three patterns. The first is continuous firing when a slow FM sweep traverses the receptive field of a cell with a sustained tonal response. The duration and amplitude of FM response decrease with increasing sweep speed. The second pattern is transient firing corresponding to the cell's phasic tonal response. This response could be evoked only by a fast FM sweep through the cell's TRF, suggesting a preference for fast FM. The third pattern was associated with the off response to pure tones and was composed of several discrete response peaks during slow FM stimulus. These peaks were not predictable from the cell's tonal response but reliably reflected the time when FM swept across specific frequencies. Our A1 samples often exhibited a complex response pattern, combining two or three of the basic patterns above, resulting in a heterogeneous response population. The diversity of FM responses suggests that A1 use multiple mechanisms to fully represent the whole range of FM parameters, including frequency extent, sweep speed, and direction.


2020 ◽  
Author(s):  
L Feigin ◽  
G Tasaka ◽  
I Maor ◽  
A Mizrahi

AbstractThe mouse auditory cortex is comprised of several auditory fields spanning the dorso-ventral axis of the temporal lobe. The ventral most auditory field is the temporal association cortex (TeA), which remains largely unstudied. Using Neuropixels probes, we simultaneously recorded from primary auditory cortex (AUDp), secondary auditory cortex (AUDv) and TeA, characterizing neuronal responses to pure tones and frequency modulated (FM) sweeps in awake head-restrained mice. As compared to primary and secondary auditory cortices, single unit responses to pure tones in TeA were sparser, delayed and prolonged. Responses to FMs were also sparser. Population analysis showed that the sparser responses in TeA render it less sensitive to pure tones, yet more sensitive to FMs. When characterizing responses to pure tones under anesthesia, the distinct signature of TeA was changed considerably as compared to that in awake mice, implying that responses in TeA are strongly modulated by non-feedforward connections. Together with the known connectivity profile of TeA, these findings suggest that sparse representation of sounds in TeA supports selectivity to higher-order features of sounds and more complex auditory computations.


1993 ◽  
Vol 70 (5) ◽  
pp. 1988-2009 ◽  
Author(s):  
S. P. Dear ◽  
J. Fritz ◽  
T. Haresign ◽  
M. Ferragamo ◽  
J. A. Simmons

1. In Eptesicus the auditory cortex, as defined by electrical activity recorded from microelectrodes in response to tone bursts, FM sweeps, and combinations of FM sweeps, encompasses an average cortical surface area of 5.7 mm2. This area is large with respect to the total cortical surface area and reflects the importance of auditory processing to this species of bat. 2. The predominant pattern of organization in response to tone bursts observed in each cortex is tonotopic, with three discernible divisions revealed by our data. However, although cortical best-frequency (BF) maps from most of the individual bats are similar, no two maps are identical. The largest division contains an average of 84% of the auditory cortical surface area, with BF tonotopically mapped from high to low along the anteroposterior axis and is part of the primary auditory cortex. The medium division encompasses an average of 13% of the auditory cortical surface area, with highly variable BF organization across bats. The third region is the smallest, with an average of only 3% of auditory cortical surface area and is located at the anterolateral edge of the cortex. This region is marked by a reversal of the tonotopic axis and a restriction in the range of BFs as compared with the larger, tonotopically organized division. 3. A population of cortical neurons was found (n = 39) in which each neuron exhibited two BF threshold minima (BF1 and BF2) in response to tone bursts. These neurons thus have multipeaked frequency threshold tuning curves. In Eptesicus the majority of multipeaked frequency-tuned neurons (n = 27) have threshold minima at frequencies that correspond to a harmonic ratio of three-to-one. In contrast, the majority of multipeaked neurons in cats have threshold minima at frequencies in a ratio of three-to-two. A three-to-one harmonic ratio corresponds to the "spectral notches" produced by interference between overlapping echoes from multiple reflective surfaces in complex sonar targets. Behavioral experiments have demonstrated the ability of Eptesicus to use spectral interference notches for perceiving target shape, and this subpopulation of multipeaked frequency-tuned neurons may be involved in coding of spectral notches. 4. The auditory cortex contains delay-tuned neurons that encode target range (n = 99). Most delay-tuned neurons respond poorly to tones or individual FM sweeps and require combinations of FM sweeps. They are combination sensitive and delay tuned.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 86 (1) ◽  
pp. 326-338 ◽  
Author(s):  
Michael P. Kilgard ◽  
Pritesh K. Pandya ◽  
Jessica Vazquez ◽  
Anil Gehi ◽  
Christoph E. Schreiner ◽  
...  

The cortical representation of the sensory environment is continuously modified by experience. Changes in spatial (receptive field) and temporal response properties of cortical neurons underlie many forms of natural learning. The scale and direction of these changes appear to be determined by specific features of the behavioral tasks that evoke cortical plasticity. The neural mechanisms responsible for this differential plasticity remain unclear partly because important sensory and cognitive parameters differ among these tasks. In this report, we demonstrate that differential sensory experience directs differential plasticity using a single paradigm that eliminates the task-specific variables that have confounded direct comparison of previous studies. Electrical activation of the basal forebrain (BF) was used to gate cortical plasticity mechanisms. The auditory stimulus paired with BF stimulation was systematically varied to determine how several basic features of the sensory input direct plasticity in primary auditory cortex (A1) of adult rats. The distributed cortical response was reconstructed from a dense sampling of A1 neurons after 4 wk of BF-sound pairing. We have previously used this method to show that when a tone is paired with BF activation, the region of the cortical map responding to that tone frequency is specifically expanded. In this report, we demonstrate that receptive-field size is determined by features of the stimulus paired with BF activation. Specifically, receptive fields were narrowed or broadened as a systematic function of both carrier-frequency variability and the temporal modulation rate of paired acoustic stimuli. For example, the mean bandwidth of A1 neurons was increased (+60%) after pairing BF stimulation with a rapid train of tones and decreased (−25%) after pairing unmodulated tones of different frequencies. These effects are consistent with previous reports of receptive-field plasticity evoked by natural learning. The maximum cortical following rate and minimum response latency were also modified as a function of stimulus modulation rate and carrier-frequency variability. The cortical response to a rapid train of tones was nearly doubled if BF stimulation was paired with rapid trains of random carrier frequency, while no following rate plasticity was observed if a single carrier frequency was used. Finally, we observed significant increases in response strength and total area of functionally defined A1 following BF activation paired with certain classes of stimuli and not others. These results indicate that the degree and direction of cortical plasticity of temporal and receptive-field selectivity are specified by the structure and schedule of inputs that co-occur with basal forebrain activation and suggest that the rules of cortical plasticity do not operate on each elemental stimulus feature independently of others.


2002 ◽  
Vol 172 (1-2) ◽  
pp. 160-171 ◽  
Author(s):  
Mark N Wallace ◽  
Trevor M Shackleton ◽  
Alan R Palmer

2009 ◽  
Vol 10 (Suppl 1) ◽  
pp. P151
Author(s):  
Ernest Montbrió ◽  
Johan P Larsson ◽  
Rita Almeida ◽  
Gustavo Deco

2011 ◽  
Vol 274 (1-2) ◽  
pp. 142-151 ◽  
Author(s):  
M.N. Wallace ◽  
B. Coomber ◽  
C.J. Sumner ◽  
J.M.S. Grimsley ◽  
T.M. Shackleton ◽  
...  

2003 ◽  
Vol 90 (4) ◽  
pp. 2660-2675 ◽  
Author(s):  
Jennifer F. Linden ◽  
Robert C. Liu ◽  
Maneesh Sahani ◽  
Christoph E. Schreiner ◽  
Michael M. Merzenich

The mouse is a promising model system for auditory cortex research because of the powerful genetic tools available for manipulating its neural circuitry. Previous studies have identified two tonotopic auditory areas in the mouse—primary auditory cortex (AI) and anterior auditory field (AAF)— but auditory receptive fields in these areas have not yet been described. To establish a foundation for investigating auditory cortical circuitry and plasticity in the mouse, we characterized receptive-field structure in AI and AAF of anesthetized mice using spectrally complex and temporally dynamic stimuli as well as simple tonal stimuli. Spectrotemporal receptive fields (STRFs) were derived from extracellularly recorded responses to complex stimuli, and frequency-intensity tuning curves were constructed from responses to simple tonal stimuli. Both analyses revealed temporal differences between AI and AAF responses: peak latencies and receptive-field durations for STRFs and first-spike latencies for responses to tone bursts were significantly longer in AI than in AAF. Spectral properties of AI and AAF receptive fields were more similar, although STRF bandwidths were slightly broader in AI than in AAF. Finally, in both AI and AAF, a substantial minority of STRFs were spectrotemporally inseparable. The spectrotemporal interaction typically appeared in the form of clearly disjoint excitatory and inhibitory subfields or an obvious spectrotemporal slant in the STRF. These data provide the first detailed description of auditory receptive fields in the mouse and suggest that although neurons in areas AI and AAF share many response characteristics, area AAF may be specialized for faster temporal processing.


Sign in / Sign up

Export Citation Format

Share Document