Sonometric Measurements of Motor-Neuron-Evoked Movements of an Internal Feeding Structure (the Radula) in Aplysia

2001 ◽  
Vol 86 (2) ◽  
pp. 1057-1061 ◽  
Author(s):  
Irina V. Orekhova ◽  
Jian Jing ◽  
Vladimir Brezina ◽  
Ralph A. DiCaprio ◽  
Klaudiusz R. Weiss ◽  
...  

In many systems used to study rhythmic motor programs, the structures that generate behavior are at least partially internal. In these systems, it is often difficult to directly monitor neurally evoked movements. As a consequence, although motor programs are relatively well characterized, it is generally less clear how neural activity is translated into functional movements. This is the case for the feeding system of the mollusk Aplysia. Here we used sonomicrometry to monitor neurally evoked movements of the food-grasping organ in Aplysia, the radula. Movements were evoked by intracellular stimulation of motor neurons that innervate radula muscles that have been extensively studied in reduced preparations. Nevertheless our results indicate that the movements and neural control of the radula are more complex than has been assumed. We demonstrate that motor neurons previously characterized as radula openers (B48) and closers (B8, B15, B16) additionally produce other movements. Moreover, we show that the size of the movement evoked by a motor neuron can depend on the preexisting state of the radula. Specifically, the motor neurons B15 and B16 produce large closing movements when the radula is partially open but produce relatively weak closing movements in a preparation at rest. Thus the efficacy of B15 and B16 as radula closers is context dependent.

1994 ◽  
Vol 72 (4) ◽  
pp. 1794-1809 ◽  
Author(s):  
P. J. Church ◽  
P. E. Lloyd

1. The firing patterns of 22 motor neurons were determined by simultaneously recording intracellularly from up to 7 neurons during evoked feedinglike buccal motor programs (BMPs). Intracellular stimulation of cerebral-buccal interneuron 2 (CBI-2) or tactile stimulation of the odontophore were used to elicit BMPs in a reduced preparation. 2. Evoked BMPs were identified as either ingestive-like (iBMP) or egestive-like (eBMP) on the basis of their similarity to those previously recorded in select neurons in freely behaving animals. Neurons were divided into the p-group, r-group, or c-group, on the basis of the phase relationships of rhythmic membrane depolarizations and hyperpolarizations during evoked BMPs. Depolarization of the p-, r-, and c-group neurons was associated with radular protraction, retraction, and closure, respectively. With one exception, the motor neurons segregated into the same groups during iBMPs and eBMPs. The exception, B7, was categorized as a c-group neuron during iBMPs, but as an r-group neuron during eBMPs. 3. Every motor neuron exhibited cyclic membrane depolarizations and hyperpolarizations, and over one-half of the neurons fired bursts of action potentials, during both iBMPs and eBMPs. The neurons fired in patterns that would be likely to release both their conventional and peptide transmitters. 4. A marked hyperpolarizing step in the p-group neurons coincident with a depolarization in the r-group neurons was observed during both iBMPs and eBMPs, suggesting a degree of shared premotor circuitry for the two BMPs. 5. A shift in the timing of activity in c-group neurons relative to that in p- and r-group neurons during iBMPs and eBMPs was observed and correlates well with the shift in phase of radular closure relative to protraction and retraction, which is useful in distinguishing ingestion from egestion in the behaving animal. 6. The firing patterns recorded in neurons that innervate overlapping populations of muscle fibers suggested that there would be complex interactions of multiple transmitters. This is particularly intriguing in the case of I3a muscle fibers, which are innervated by two excitatory and one inhibitory neuron. The firing patterns recorded in these neurons suggest that the inhibitory motor neuron may serve to not only block inappropriate contractions, but also to specifically shape evoked contractions during feeding.


1979 ◽  
Vol 42 (4) ◽  
pp. 954-974 ◽  
Author(s):  
S. C. Rosen ◽  
K. R. Weiss ◽  
I. Kupfermann

1. The cells of two clusters of small neurons on the ventrocaudal surface of each hemicerebral ganglion of Aplysia were found to exhibit action potentials following tactile stimuli applied to the skin of the head. These neurons appear to be mechanosensory afferents since they possess axons in the nerves innervating the skin and tactile stimulation evokes spikes with no prepotentials, even when the cell bodies are sufficiently hyperpolarized to block some spikes. The mechanosensory afferents may be primary afferents since the sensory response persists after chemical synaptic transmission is blocked by bathing the ganglion and peripheral structures in seawater with a high-Mg2+ and low-Ca2+ content. 2. The mechanosensory afferents are normally silent and are insensitive to photic, thermal, and chemical stimuli. A punctate tactile stimulus applied to a circumscribed region of skin can evoke a burst of spikes. If the stimulus is maintained at a constant forces, the mechanosensory response slowly adapts over a period of seconds. Repeated brief stimuli have little or no effect on spike frequency within a burst. 3. Approximately 81% of the mechanoafferent neurons have a single ipsilateral receptive field. The fields are located on the lips, the anterior tentacles, the dorsal portion of the head, the neck, or the perioral zone. Because many cells have collateral axons in the cerebral connectives, receptive fields elsewhere on the body are a possibility. The highest receptive-field density was associated with the lips. Within each area, receptive fields vary in size and shape. Adjacent fields overlap and larger fields frequently encompass several smaller ones. The features of some fields appear invariant from one animal to the next. A loose form of topographic organization of the mechanoafferent cells was observed. For example, cells located in the medial cluster have lip receptive fields, and most cells in the posterolateral portion of the lateral clusters have tentacle receptive fields. 4. Intracellular stimulation of individual mechanoafferents evokes short and constant-latency EPSPs in putative motor neurons comprising the identified B-cell clusters of the cerebral ganglion. On the basis of several criteria, these EPSPs appear to be several criteria, these EPSPs appear to be chemically mediated and are monosynaptic. 5. Repetitive intracellular stimulation of individual mechanoafferent neurons at low rates results in a gradual decrement in the amplitude of the EPSPs evoked in B cluster neurons. EPSP amplitude can be restored following brief periods of rest, but subsequent stimulation leads to further diminution of the response. 6. A decremented response cannot be restored by strong mechanical stimulation outside the receptive field of the mechanoafferent or by electrical stimulation of the cerebral nerves or connectives...


2004 ◽  
Vol 92 (4) ◽  
pp. 2312-2322 ◽  
Author(s):  
Avniel N. Shetreat-Klein ◽  
Elizabeth C. Cropper

A manipulation often used to determine whether a neuron plays a role in the generation of a motor program involves injecting current into the cell during rhythmic activity to determine whether activity is modified. We perform this type of manipulation to study the impact of afferent activity on feeding-like motor programs in Aplysia. We trigger biting-like programs and manipulate sensory neurons that have been implicated in producing the changes in activity that occur when food is ingested, i.e., when bites are converted to bite-swallows. Sensory neurons that are manipulated are the radula mechanoafferent B21 and the retraction proprioceptor B51. Data suggest that both cells are peripherally activated during radula closing/retraction when food is ingested. We found that phasic subthreshold depolarization of a single sensory neuron can significantly prolong radula closing/retraction, as determined by recording both from interneurons (e.g., B64), and motor neurons (e.g., B15 and B8). Additionally, afferent activity produces a delay in the onset of the subsequent radula opening/protraction, and increases the firing frequency of motor neurons. These are the changes in activity that are seen when food is ingested. These results add to the growing data that implicate B21 and B51 in bite to bite-swallow conversions and indicate that afferent activity is important during feeding in Aplysia.


2005 ◽  
Vol 94 (1) ◽  
pp. 531-549 ◽  
Author(s):  
Yuriy Zhurov ◽  
Klaudiusz R. Weiss ◽  
Vladimir Brezina

Like other complex behaviors, the cyclical, rhythmic consummatory feeding behaviors of Aplysia—biting, swallowing, and rejection of unsuitable food—are produced by a complex neuromuscular system: the animal's buccal mass, with numerous pairs of antagonistic muscles, controlled by the firing of numerous motor neurons, all driven by the motor programs of a central pattern generator (CPG) in the buccal ganglia. In such a complex neuromuscular system, it has always been assumed that the activities of the various components must necessarily be tightly coupled and coordinated if successful functional behavior is to be produced. However, we have recently found that the CPG generates extremely variable motor programs from one cycle to the next, and so very variable motor neuron firing patterns and contractions of individual muscles. Here we show that this variability extends even to higher-level parameters of the operation of the neuromuscular system such as the coordination between entire antagonistic subsystems within the buccal neuromusculature. In motor programs elicited by stimulation of the esophageal nerve, we have studied the relationship between the contractions of the accessory radula closer (ARC) muscle, and the firing patterns of its motor neurons B15 and B16, with those of its antagonist, the radula opener (I7) muscle, and its motor neuron B48. There are two separate B15/B16-ARC subsystems, one on each side of the animal, and these are indeed very tightly coupled. Tight coupling can, therefore, be achieved in this neuromuscular system where required. Yet there is essentially no coupling at all between the contractions of the ARC muscles and those of the antagonistic radula opener muscle. We interpret this result in terms of a hypothesis that ascribes a higher-order benefit to such loose coupling in the neuromusculature. The variability, emerging in the successive feeding movements made by the animal, diversifies the range of movements and thereby implements a trial-and-error search through the space of movements that might be successful, an optimal strategy for the animal in an unknown, rapidly changing feeding environment.


1994 ◽  
Vol 72 (1) ◽  
pp. 235-247 ◽  
Author(s):  
H. Namba ◽  
T. Nagayama ◽  
M. Hisada

1. Electrical stimulation of afferents innervating an exopodite causes a closing pattern of activity in the uropod motor neurons. In this reflex two distinct types of nonspiking local interneurons, posterolateral (PL) and anterolateral (AL) types, classified by their gross morphology and somata location, receive sensory inputs and control the motor output to the uropod. 2. In the sensory-motor pathway, the PL and AL nonspiking local interneurons formed opposing and parallel connections with uropod motor neurons. For example, the PL interneurons that excited the closer, reductor motor neuron by injecting depolarizing current received depolarizing postsynaptic potentials (PSPs), whereas the AL interneurons of the same output received hyperpolarizing PSPs. The PL interneurons that inhibited the reductor motor neuron received hyperpolarizing PSPs, whereas the AL interneurons of the similar output received depolarizing PSPs. 3. During fictive abdominal extension, induced by electrical stimulation of extension-evoking command fibers in the second-third abdominal connective, the uropod motor neurons show an opening pattern of activity that is opposite to the pattern elicited by sensory stimulation. Furthermore, sensory stimulation during ongoing fictive abdominal extension has little effect on the uropod motor neurons. 4. Except for the nonspiking local interneurons, the majority of other local circuit neurons, i.e., spiking local interneurons and ascending interneurons, are not driven by the descending inputs during abdominal extension. 5. A comparison of the responses of the nonspiking local interneurons to both sensory and descending inputs reveals that the majority of nonspiking local interneurons receive both inputs, but the sign of response to each is frequently opposite. This study suggests that the degree of excitability of two distinct types of PL and AL nonspiking local interneurons induced by sensory inputs changes depending on whether the crayfish is in a resting posture or is active with full extension of the abdomen. Ongoing abdominal extension in swimming or defensive crayfish would shift the gain of reflex pathways through the PL and AL interneurons, and motor response resulting from sensory inputs would be modulated.


2001 ◽  
Vol 86 (2) ◽  
pp. 792-808 ◽  
Author(s):  
Ágnes Vehovszky ◽  
Christopher J. H. Elliott

We describe the role of the octopamine-containing OC interneurons in the buccal feeding system of Lymnaea stagnalis. OC neurons are swallowing phase interneurons receiving inhibitory inputs in the N1 and N2 phases, and excitatory inputs in the N3 phase of fictive feeding. Although the OC neurons do not always fire during feeding, the feeding rate is significantly ( P < 0.001) higher when both SO and OC fire in each cycle than when only the SO fires. In 28% of silent preparations, a single stimulation of an OC interneuron evokes the feeding pattern. Repetitive stimulation of the OC interneuron increases the proportion of responsive preparations to 41%. The OC interneuron not only changes both the feeding rate and reconfigures the pattern. Depolarization of the OC interneurons increases the feeding rate and removes the B3 motor neuron from the firing sequence. Hyperpolarization slows it down (increasing the duration of N1 and N3 phases) and recruits the B3 motor neuron. OC interneurons form synaptic connections onto buccal motor neurons and interneurons but not onto the cerebral (cerebral giant cell) modulatory neurons. OC interneurons are electrically coupled to all N3 phase (B4, B4Cl, B8) feeding motor neurons. They form symmetrical connections with the N3p interneurons having dual electrical (excitatory) and chemical (inhibitory) components. OC interneurons evoke biphasic synaptic inputs on the protraction phase interneurons (SO, N1L, N1M), with a short inhibition followed by a longer lasting depolarization. N2d interneurons are hyperpolarized, while N2v interneurons are slowly depolarized and often fire a burst after OC stimulation. Most motor neurons also receive synaptic responses from the OC interneurons. Although OC and N3p interneurons are both swallowing phase interneurons, their synaptic contacts onto follower neurons are usually different (e.g., the B3 motor neurons are inhibited by OC, but excited by N3p interneurons). Repetitive stimulation of OC interneuron facilitates the excitatory component of the biphasic responses evoked on the SO, N1L, and N1M interneurons, but neither the N2 nor the N3 phase interneurons display a similar longer-lasting excitatory effect. OC interneurons are inhibited by all the buccal feeding interneurons, but excited by the serotonergic modulatory CGC neurons. We conclude that OC interneurons are a new kind of swallowing phase interneurons. Their connections with the buccal feeding interneurons can account for their modulatory effects on the feeding rhythm. As they contain octopamine, this is the first example in Lymnaea that monoaminergic modulation and reconfiguration are provided by an intrinsic member of the buccal feeding network.


1978 ◽  
Vol 41 (2) ◽  
pp. 418-431 ◽  
Author(s):  
J. H. Byrne ◽  
V. F. Castellucci ◽  
E. R. Kandel

1. To evaluate the contribution which mechanoreceptor sensory neurons make to the defensive gill-withdrawal reflex we developed an isolated reflex preparation. We then reduced this isolated reflex to a microcircuit (consisting of a single sensory cell and single motor cell) so as to causally relate the contribution of individual cells to the expression and plastic properties of the behavior. 2. Mechanoreceptor neurons make significant contributions to the amplitude and duration of the complex PSP in the motor neurons. A single spike in a sensory neuron produces an EPSP in the motor neuron which accounts for 7-36% of the complex EPSP produced by weak tactile stimulation of the skin. 3. More than 50% of the synaptic input to the gill motor neurons appears to be monosynaptic. Perfusing the ganglion with solutions of high divalent cations reduced the motor neurons' complex PSP by only 40%. 4. The population response of the mechanoreceptors to a point stimulus can be simulated by repetitively firing a single sensory neuron. Firing a single sensory cell discharges the motor neuron and produces a gill contraction similar to that produced by a natural stimulus. 5. Mechanoreceptors make monosynaptic connections onto gill motor neurons which decrement with repeated stimulation paralleling the decrement of the complex PSP to punctate tactile stimulation of the skin. 6. The results indicate that the known neural elements may quantitatively account for most of the expression of the behavior and its short-term habituation.


1978 ◽  
Vol 41 (3) ◽  
pp. 609-620 ◽  
Author(s):  
B. Jahan-Parwar ◽  
S. M. Fredman

1. Intracellular stimulation of individual neurons in the two symmetrical A neuron clusters of the cerebral ganglion evoked contractions of both the foot and parapodia. Electrical stimulation of pedal and parapodial nerves caused antidromic action potentials in A neurons. Units recorded in the nerves followed the driven somatic spike 1:1. This suggests that the A neurons are presumptive pedal and parapodial motor neurons.2. Individual A neurons evoked both bilteral and unilateral contractions of the parapodia or split foot. Contractions in the parapodia were independent of those in the foot. An individual A neuron caused contractions in either the foot or the parapodia, but not both. Sequential transection of parapodial nerves had only a slight effect until a key nerve was cut. The contractions produced by a single A neuron on one side were then abolished. These data suggest that the motor fields of the A neurons are well defined within the foot or the parapodia. 3. Parapodial contractions produced by individual A neurons are not dependent on the excitation of follower motor neurons. Blocking synaptic transmission by the addition of CoCl2 did not eliminate the contractions produced by driving individual A neurons. This is consistent with the A neurons being motor neurons. 4. Intracellular stimulation of individual neurons in the symmetrical B neuron clusters of the cerebral ganglion also evoked pedal and parapodial contractions. Electrical stimulation of the pedal and parapodial nerves elicited antidromic spikes in these neurons. Individual B neurons caused contractions in both the foot and parapodia. This suggests that the B neurons are motor neurons with very large motor fields. 5. Filling the pedal and parapodial nerves with cobalt primarily filled the cell bodies of neurons located in the pedal and pleural ganglia. The somata of A and B neurons were also occasionally filled. This is consistent with the electrophisiological results. 6. Other neurons also evoked parapodial contractions. Intracellular stimulation of neurons in the pedal and pleural ganglia caused parapodial contractions in intact animals. Some of these neurons were excited by stretching the parapodia or touching the tentacles. 7. The B neurons are strongly excited by tactile stimulation of the tentacles. Since they can cause pedal and parapodial contractions they may mediate reflex contractions elicited by tentacular stimulation. Stretching the parapodia only occasionally caused the A neurons to fire. This makes it unlikely that they make a major contribution to pedal and parapodial proprioceptive reflexes. These reflexes are probably controlled by neurons in the pedal and pleural ganglia.


2000 ◽  
Vol 84 (6) ◽  
pp. 2961-2974 ◽  
Author(s):  
José Antonio D. Sánchez ◽  
Yongsheng Li ◽  
Mark D. Kirk

In the sea slug Aplysia, rhythmic biting is eliminated after bilateral cerebral-buccal connective (CBC) crushes and recovers within 14 days postlesion (dpl). The ability of cerebral-buccal interneuron-2 (CBI-2) to elicit ingestion buccal motor programs (iBMPs; i.e., fictive rhythmic ingestion) and to regenerate synaptic connections with target buccal neurons was assessed with intracellular recordings and dye injections. Isolated central ganglia were obtained from control animals and from lesioned animals at selected times after bilateral CBC crushes. Within 3 wk postlesion, transected CBI-2 axons sprouted at least 10 fine neurites confined to the core of the CBC that projected across the crush site toward the buccal ganglia. When fired with depolarizing current steps, CBI-2 was not observed to elicit iBMPs in preparations until 14 dpl. Thereafter a progressive enhancement in CBI-2's ability to elicit iBMPs was observed with time postlesion. By 40 dpl, CBI-2-elicited iBMPs were indistinguishable from those of controls. CBI-2 regenerated monosynaptic connections with appropriate buccal premotor- and motorneurons by 14 dpl, and the strength of these connections increased with time postlesion. Dramatic frequency facilitation was exhibited by the regenerating CBI-2 buccal synapses; for instance, at early postlesion times, no observable excitatory postsynaptic potentials (EPSPs) were obtained with 1- Hz stimulation of CBI-2, while at 7 Hz, a dramatic increase in EPSP amplitude was obtained with successive spikes. The present study shows that the time course of axonal and synaptic regeneration by command-like interneuron CBI-2 is correlated with the recovery of ingestion buccal motor programs elicited by CBI-2. These results parallel our previous findings of functional neural regeneration in the feeding system and suggest that functional neural regeneration is at least in part mediated by regeneration of specific synaptic pathways.


1997 ◽  
Vol 78 (6) ◽  
pp. 2951-2965 ◽  
Author(s):  
Steven A. Prescott ◽  
Nishi Gill ◽  
Ronald Chase

Prescott, Steven A., Nishi Gill, and Ronald Chase. Neural circuit mediating tentacle withdrawal in Helix aspersa, with specific reference to the competence of the motor neuron C3. J. Neurophysiol. 78: 2951–2965, 1997. The tentacle withdrawal reflex in the terrestrial snail Helix aspersa involves bending and retraction of the tentacles. When elicited by mechanical stimulation of the tentacle, the reflex is mediated by the conjoint action of the central and peripheral nervous systems. The neural circuit underlying the stimulus-response pathways was studied in vitro using a combination of morphological and physiological techniques. Sensory input caused by stimulation of the nose (situated at the superior tentacle's tip) first passes into the tentacle ganglion. Motor fibers are likely excited in the tentacle ganglion to form a peripheral stimulus-response pathway. While still in the tentacle ganglion, the excitation caused by a brief stimulus is transformed into a prolonged neuronal discharge. This modified signal travels, via the olfactory nerve, to the cerebral ganglion where it excites the giant motor neuron C3 along with numerous smaller motor neurons. Afferent input to C3 also arrives from several other sources. The afferent convergence is followed by a marked divergence of C3's output. C3 innervates the muscles mediating both tentacle retraction and tentacle bending through multiple cerebral nerves. Thus C3's pattern of effector innervation allows this single cell to elicit and coordinate both components of the tentacle withdrawal reflex. Lesion experiments indicate that C3 is responsible for 85% of the central contribution to tentacle retraction, though C3 is actually sufficient to mediate maximal muscle contraction as evidenced by intracellular stimulation. In addition to C3, three groups of putative central motor neurons were identified through nerve backfills and nerve recordings. The additional motor neurons mediating tentacle retraction are important for maximizing the rate of muscle contraction, whereas those mediating tentacle bending are likely more important for nondefensive behaviors. These neurons are arranged in parallel with C3, but unlike C3, each of these neurons innervates only a single effector or portion thereof. Given C3's direct innervation of multiple effectors and its sufficiency to evoke strong responses in those effectors, we conclude that C3 is paramount in eliciting and coordinating tentacle withdrawal.


Sign in / Sign up

Export Citation Format

Share Document