Regeneration of Cerebral-Buccal Interneurons and Recovery of Ingestion Buccal Motor Programs in Aplysia After CNS Lesions

2000 ◽  
Vol 84 (6) ◽  
pp. 2961-2974 ◽  
Author(s):  
José Antonio D. Sánchez ◽  
Yongsheng Li ◽  
Mark D. Kirk

In the sea slug Aplysia, rhythmic biting is eliminated after bilateral cerebral-buccal connective (CBC) crushes and recovers within 14 days postlesion (dpl). The ability of cerebral-buccal interneuron-2 (CBI-2) to elicit ingestion buccal motor programs (iBMPs; i.e., fictive rhythmic ingestion) and to regenerate synaptic connections with target buccal neurons was assessed with intracellular recordings and dye injections. Isolated central ganglia were obtained from control animals and from lesioned animals at selected times after bilateral CBC crushes. Within 3 wk postlesion, transected CBI-2 axons sprouted at least 10 fine neurites confined to the core of the CBC that projected across the crush site toward the buccal ganglia. When fired with depolarizing current steps, CBI-2 was not observed to elicit iBMPs in preparations until 14 dpl. Thereafter a progressive enhancement in CBI-2's ability to elicit iBMPs was observed with time postlesion. By 40 dpl, CBI-2-elicited iBMPs were indistinguishable from those of controls. CBI-2 regenerated monosynaptic connections with appropriate buccal premotor- and motorneurons by 14 dpl, and the strength of these connections increased with time postlesion. Dramatic frequency facilitation was exhibited by the regenerating CBI-2 buccal synapses; for instance, at early postlesion times, no observable excitatory postsynaptic potentials (EPSPs) were obtained with 1- Hz stimulation of CBI-2, while at 7 Hz, a dramatic increase in EPSP amplitude was obtained with successive spikes. The present study shows that the time course of axonal and synaptic regeneration by command-like interneuron CBI-2 is correlated with the recovery of ingestion buccal motor programs elicited by CBI-2. These results parallel our previous findings of functional neural regeneration in the feeding system and suggest that functional neural regeneration is at least in part mediated by regeneration of specific synaptic pathways.

2000 ◽  
Vol 83 (1) ◽  
pp. 374-392 ◽  
Author(s):  
Evgeni A. Kabotyanski ◽  
Douglas A. Baxter ◽  
Susan J. Cushman ◽  
John H. Byrne

The buccal ganglia of Aplysia contain a central pattern generator (CPG) that mediates rhythmic movements of the buccal apparatus during feeding. Activity in this CPG is believed to be regulated, in part, by extrinsic serotonergic inputs and by an intrinsic and extrinsic system of putative dopaminergic cells. The present study investigated the roles of dopamine (DA) and serotonin (5-HT) in regulating feeding movements of the buccal apparatus and properties of the underlying neural circuitry. Perfusing a semi-intact head preparation with DA (50 μM) or the metabolic precursor of catecholamines (l-3–4-dihydroxyphenylalanine, DOPA, 250 μM) induced feeding-like movements of the jaws and radula/odontophore. These DA-induced movements were similar to bites in intact animals. Perfusing with 5-HT (5 μM) also induced feeding-like movements, but the 5-HT-induced movements were similar to swallows. In preparations of isolated buccal ganglia, buccal motor programs (BMPs) that represented at least two different aspects of fictive feeding (i.e., ingestion and rejection) could be recorded. Bath application of DA (50 μM) increased the frequency of BMPs, in part, by increasing the number of ingestion-like BMPs. Bath application of 5-HT (5 μM) did not significantly increase the frequency of BMPs nor did it significantly increase the proportion of ingestion-like BMPs being expressed. Many of the cells and synaptic connections within the CPG appeared to be modulated by DA or 5-HT. For example, bath application of DA decreased the excitability of cells B4/5 and B34, which in turn may have contributed to the DA-induced increase in ingestion-like BMPs. In summary, bite-like movements were induced by DA in the semi-intact preparation, and neural correlates of these DA-induced effects were manifest as an increase in ingestion-like BMPs in the isolated ganglia. Swallow-like movements were induced by 5-HT in the semi-intact preparation. Neural correlates of these 5-HT-induced effects were not evident in isolated buccal ganglia, however.


2003 ◽  
Vol 89 (4) ◽  
pp. 2120-2136 ◽  
Author(s):  
Itay Hurwitz ◽  
Irving Kupfermann ◽  
Klaudiusz R. Weiss

Consummatory feeding movements in Aplysia californica are organized by a central pattern generator (CPG) in the buccal ganglia. Buccal motor programs similar to those organized by the CPG are also initiated and controlled by the cerebro-buccal interneurons (CBIs), interneurons projecting from the cerebral to the buccal ganglia. To examine the mechanisms by which CBIs affect buccal motor programs, we have explored systematically the synaptic connections from three of the CBIs (CBI-1, CBI-2, CBI-3) to key buccal ganglia CPG neurons (B31/B32, B34, and B63). The CBIs were found to produce monosynaptic excitatory postsynaptic potentials (EPSPs) with both fast and slow components. In this report, we have characterized only the fast component. CBI-2 monosynaptically excites neurons B31/B32, B34, and B63, all of which can initiate motor programs when they are sufficiently stimulated. However, the ability of CBI-2 to initiate a program stems primarily from the excitation of B63. In B31/B32, the size of the EPSPs was relatively small and the threshold for excitation was very high. In addition, preventing firing in either B34 or B63 showed that only a block in B63 firing prevented CBI-2 from initiating programs in response to a brief stimulus. The connections from CBI-2 to the buccal ganglia neurons showed a prominent facilitation. The facilitation contributed to the ability of CBI-2 to initiate a BMP and also led to a change in the form of the BMP. The cholinergic blocker hexamethonium blocked the fast EPSPs induced by CBI-2 in buccal ganglia neurons and also blocked the EPSPs between a number of key CPG neurons within the buccal ganglia. CBI-2 and B63 were able to initiate motor patterns in hexamethonium, although the form of a motor pattern was changed, indicating that non-hexamethonium-sensitive receptors contribute to the ability of these cells to initiate bursts. By contrast to CBI-2, CBI-1 excited B63 but inhibited B34. CBI-3 excited B34 and not B63. The data indicate that CBI-1, -2, and -3 are components of a system that initiates and selects between buccal motor programs. Their behavioral function is likely to depend on which combination of CBIs and CPG elements are activated.


1985 ◽  
Vol 54 (6) ◽  
pp. 1396-1411 ◽  
Author(s):  
C. J. Elliott ◽  
P. R. Benjamin

Intracellular recordings were made from rhythm-generating interneurons in the Lymnaea feeding system. The feeding pattern is a three-phase rhythm of interneuronal activity (N1, N2, N3) corresponding to protraction, rasp, and swallow. We describe the firing pattern and anatomy of the premotor interneurons, each of which fires a predominant burst in only one phase of the feeding rhythm. The rhythm can be driven by steady depolarization of N1 cells. The phase of the rhythm is reset by brief stimulation of N2 or N3 interneurons. N1 neurons excite the N2 interneurons, and these in turn inhibit the N1 cells. This recurrent inhibitory pathway can account for the switch from the N1 phase of the feeding cycles to the N2 phase. The endogenous properties of the N2 interneurons are apparently responsible for the termination of N2 bursts. N3 interneurons display postinhibitory rebound (PIR), and this probably contributes to their burst after the end of the N2 inhibitory input. N2 and N3 interneurons inhibit the N1 cells. When the N3 burst dies away, activity in N1 cells resumes under the stimulus of depolarizing current. Interactions between interneurons are mainly by discrete, monophasic postsynaptic potentials, that follow 1:1. They have relatively short latency (2-12 ms) and duration (up to 100 ms). The synaptic connections between the three types of premotor interneurons are sufficient to account for the sequence of activity seen during feeding.


1989 ◽  
Vol 61 (4) ◽  
pp. 727-736 ◽  
Author(s):  
C. J. Elliott ◽  
P. R. Benjamin

1. We identify esophageal mechanoreceptor (OM) neurons of Lymnaea with cell bodies in the buccal ganglia and axons that branch repeatedly to terminate in the esophageal wall. 2. The OM cells respond phasically to gut distension. Experiments with a high magnesium/low calcium solution suggest that the OM neurons are primary mechanoreceptors. 3. In the isolated CNS preparation, the OM cells receive little synaptic input during the feeding cycle. 4. The OM cells excite the motoneurons active in the rasp phase of the feeding cycle. 5. The OM cells inhibit each of the identified pattern-generating and modulatory interneurons in the buccal ganglia. Experiments with a saline rich in magnesium and calcium suggest that the connections are monosynaptic. 6. Stimulation of a single OM cell to fire at 5-15 Hz is sufficient to terminate the feeding rhythm in the isolated CNS preparation. 7. We conclude that these neurons play a role in terminating feeding behavior.


1999 ◽  
Vol 81 (4) ◽  
pp. 1983-1987 ◽  
Author(s):  
R. Nargeot ◽  
D. A. Baxter ◽  
G. W. Patterson ◽  
J. H. Byrne

Dopaminergic synapses mediate neuronal changes in an analogue of operant conditioning. Feeding behavior in Aplysiacan be modified by operant conditioning in which contingent reinforcement is conveyed by the esophageal nerve (E n.). A neuronal analogue of this conditioning in the isolated buccal ganglia was developed by using stimulation of E n. as an analogue of contingent reinforcement. Previous studies indicated that E n. may release dopamine. We used a dopamine antagonist (methylergonovine) to investigate whether dopamine mediated the enhancement of motor patterns in the analogue of operant conditioning. Methylergonovine blocked synaptic connections from the reinforcement pathway and the contingent-dependent enhancement of the reinforced pattern. These results suggest that dopamine mediates at least part of the neuronal modifications induced by contingent reinforcement.


1985 ◽  
Vol 54 (6) ◽  
pp. 1412-1421 ◽  
Author(s):  
C. J. Elliott ◽  
P. R. Benjamin

We have used intracellular recording from groups of interneurons in the feeding system of the pond snail, Lymnaea stagnalis, to examine the connections of a modulatory interneuron, the slow oscillator (SO), with the network of pattern-generating interneurons (N1, N2, and N3). The SO is an interneuron whose axon branches solely within the buccal ganglia. There is only one such cell in each snail. In half the snails the cell body is in the right buccal ganglion and in the other half in the left buccal ganglion. Stimulation of either the SO or one of the N1 pattern-generating interneurons elicits the feeding rhythm, but of all the buccal neurons, only the SO can drive the feeding rhythm at the frequency seen in the intact snail. The SO makes reciprocal excitatory synapses with the N1 interneurons that drive the protraction of the radula. This ensures strong activation of the feeding system. The SO inhibits the N2 interneurons. Postsynaptic potentials evoked by stimulation of the SO facilitate without spike broadening in the SO. The SO is strongly inhibited by N2 and N3 interneurons, which are active during the retraction phase. This gates any excitatory inputs to the SO, probably preventing protraction of the radula while retraction is underway. The results support the idea of a single interneuron capable of driving a hierarchically organized motor system.


2001 ◽  
Vol 86 (2) ◽  
pp. 1057-1061 ◽  
Author(s):  
Irina V. Orekhova ◽  
Jian Jing ◽  
Vladimir Brezina ◽  
Ralph A. DiCaprio ◽  
Klaudiusz R. Weiss ◽  
...  

In many systems used to study rhythmic motor programs, the structures that generate behavior are at least partially internal. In these systems, it is often difficult to directly monitor neurally evoked movements. As a consequence, although motor programs are relatively well characterized, it is generally less clear how neural activity is translated into functional movements. This is the case for the feeding system of the mollusk Aplysia. Here we used sonomicrometry to monitor neurally evoked movements of the food-grasping organ in Aplysia, the radula. Movements were evoked by intracellular stimulation of motor neurons that innervate radula muscles that have been extensively studied in reduced preparations. Nevertheless our results indicate that the movements and neural control of the radula are more complex than has been assumed. We demonstrate that motor neurons previously characterized as radula openers (B48) and closers (B8, B15, B16) additionally produce other movements. Moreover, we show that the size of the movement evoked by a motor neuron can depend on the preexisting state of the radula. Specifically, the motor neurons B15 and B16 produce large closing movements when the radula is partially open but produce relatively weak closing movements in a preparation at rest. Thus the efficacy of B15 and B16 as radula closers is context dependent.


1992 ◽  
Vol 68 (05) ◽  
pp. 545-549 ◽  
Author(s):  
W L Chandler ◽  
S C Loo ◽  
D Mornin

SummaryThe purpose of this study was to determine whether different regions of the rabbit vascular system show variations in the rate of plasminogen activator (PA) secretion. To start, we evaluated the time course, dose response and adrenergic specificity of PA release. Infusion of 1 µg/kg of epinephrine stimulated a 116 ± 60% (SD) increase in PA activity that peaked 30 to 60 s after epinephrine administration. Infusion of 1 µg/kg of norepinephrine, isoproterenol and phenylephrine had no effect on PA activity. Pretreatment with phentolamine, an alpha adrenergic antagonist, blocked the release of PA by epinephrine while pretreatment with the beta blocker propranolol had no effect. This suggests that PA release in the rabbit was mediated by some form of alpha receptor.Significant arterio-venous differences in basal PA activity were found across the pulmonary and splanchnic vascular beds but not the lower extremity/pelvic bed. After stimulation with epinephrine, PA activity increased 46% across the splanchnic bed while no change was seen across the lower extremity/pelvic bed. We conclude that several vascular beds contribute to circulating PA activity in the rabbit, and that these beds secrete PA at different rates under both basal and stimulated conditions.


1993 ◽  
Vol 69 (3) ◽  
pp. 953-964 ◽  
Author(s):  
P. W. Glimcher ◽  
D. L. Sparks

1. The first experiment of this study determined the effects of low-frequency stimulation of the monkey superior colliculus on spontaneous saccades in the dark. Stimulation trains, subthreshold for eliciting short-latency fixed-vector saccades, were highly effective at biasing the metrics (direction and amplitude) of spontaneous movements. During low-frequency stimulation, the distribution of saccade metrics was biased toward the direction and amplitude of movements induced by suprathreshold stimulation of the same collicular location. 2. Low-frequency stimulation biased the distribution of saccade metrics but did not initiate movements. The distribution of intervals between stimulation onset and the onset of the next saccade did not differ significantly from the distribution of intervals between an arbitrary point in time and the onset of the next saccade under unstimulated conditions. 3. Results of our second experiment indicate that low-frequency stimulation also influenced the metrics of visually guided saccades. The magnitude of the stimulation-induced bias increased as stimulation current or frequency was increased. 4. The time course of these effects was analyzed by terminating stimulation immediately before, during, or after visually guided saccades. Stimulation trains terminated at the onset of a movement were as effective as stimulation trains that continued throughout the movement. No effects were observed if stimulation ended 40–60 ms before the movement began. 5. These results show that low-frequency collicular stimulation can influence the direction and amplitude of spontaneous or visually guided saccades without initiating a movement. These data are compatible with the hypothesis that the collicular activity responsible for specifying the horizontal and vertical amplitude of a saccade differs from the type of collicular activity that initiates a saccade.


1996 ◽  
Vol 318 (2) ◽  
pp. 723-728 ◽  
Author(s):  
Michel PUCEAT ◽  
Guy VASSORT

Phospholipase Cγ (PLCγ) expression and activation by a purinergic agonist were investigated in adult rat cardiomyocytes. PLCγ is expressed in isolated cardiomyocytes. Stimulation of cells with extracellular ATP induces a rapid increase in membrane-associated PLCγ immunoreactivity most probably due to redistribution of the lipase from the cytosol to the membrane. The purine triggers a significant phosphorylation on tyrosine residues of a cytosolic pool of PLCγ with a time course that correlates with that of translocation. Extracellular ATP also increases intracellular Ins(1,4,5)P3 content. All these events (translocation and phosphorylation of PLCγ, InsP3 formation) are blocked by genistein, a tyrosine kinase inhibitor. The purinergic effect on both PLCγ translocation and phosphorylation are Ca-sensitive. We thus propose that the purinergic stimulation activates a non-receptor tyrosine kinase that phosphorylates PLCγ in the presence of an increased Ca level and induces PLCγ redistribution to the membrane. There, PLCγ becomes activated leading to the hydrolysis of phosphatidylinositol diphosphate and in turn Ins(1,4,5)P3 formation. This cascade of events may play a significant role in the induction of arrhythmogenesis by purinergic agonists.


Sign in / Sign up

Export Citation Format

Share Document