scholarly journals Human Cortical Activity Correlates With Stereoscopic Depth Perception

2001 ◽  
Vol 86 (4) ◽  
pp. 2054-2068 ◽  
Author(s):  
Benjamin T. Backus ◽  
David J. Fleet ◽  
Andrew J. Parker ◽  
David J. Heeger

Stereoscopic depth perception is based on binocular disparities. Although neurons in primary visual cortex (V1) are selective for binocular disparity, their responses do not explicitly code perceived depth. The stereoscopic pathway must therefore include additional processing beyond V1. We used functional magnetic resonance imaging (fMRI) to examine stereo processing in V1 and other areas of visual cortex. We created stereoscopic stimuli that portrayed two planes of dots in depth, placed symmetrically about the plane of fixation, or else asymmetrically with both planes either nearer or farther than fixation. The interplane disparity was varied parametrically to determine the stereoacuity threshold (the smallest detectable disparity) and the upper depth limit (largest detectable disparity). fMRI was then used to quantify cortical activity across the entire range of detectable interplane disparities. Measured cortical activity covaried with psychophysical measures of stereoscopic depth perception. Activity increased as the interplane disparity increased above the stereoacuity threshold and dropped as interplane disparity approached the upper depth limit. From the fMRI data and an assumption that V1 encodes absolute retinal disparity, we predicted that the mean response of V1 neurons should be a bimodal function of disparity. A post hoc analysis of electrophysiological recordings of single neurons in macaques revealed that, although the average firing rate was a bimodal function of disparity (as predicted), the precise shape of the function cannot fully explain the fMRI data. Although there was widespread activity within the extrastriate cortex (consistent with electrophysiological recordings of single neurons), area V3A showed remarkable sensitivity to stereoscopic stimuli, suggesting that neurons in V3A may play a special role in the stereo pathway.

Author(s):  
Andrew J. Parker

Humans and some animals can use their two eyes in cooperation to detect and discriminate parts of the visual scene based on depth. Owing to the horizontal separation of the eyes, each eye obtains a slightly different view of the scene in front of the head. These small differences are processed by the nervous system to generate a sense of binocular depth. As humans, we experience an impression of solidity that is fully three-dimensional; this impression is called stereopsis and is what we appreciate when we watch a 3D movie or look into a stereoscopic viewer. While the basic perceptual phenomena of stereoscopic vision have been known for some time, it is mainly within the last 50 years that we have gained an understanding of how the nervous system delivers this sense of depth. This period of research began with the identification of neuronal signals for binocular depth in the primary visual cortex. Building on that finding, subsequent work has traced the signaling pathways for binocular stereoscopic depth forward into extrastriate cortex and further on into cortical areas concerning with sensorimotor integration. Within these pathways, neurons acquire sensitivity to more complex, higher order aspects of stereoscopic depth. Signals relating to the relative depth of visual features can be identified in the extrastriate cortex, which is a form of selectivity not found in the primary visual cortex. Over the same time period, knowledge of the organization of binocular vision in animals that inhabit a wide diversity of ecological niches has substantially increased. The implications of these findings for developmental and adult plasticity of the visual nervous system and onset of the clinical condition of amblyopia are explored in this article. Amblyopic vision is associated with a cluster of different visual and oculomotor symptoms, but the loss of high-quality stereoscopic depth performance is one of the consistent clinical features. Understanding where and how those losses occur in the visual brain is an important goal of current research, for both scientific and clinical reasons.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e80745 ◽  
Author(s):  
Fernanda da C. e C. Faria ◽  
Jorge Batista ◽  
Helder Araújo

2006 ◽  
Vol 96 (2) ◽  
pp. 775-784 ◽  
Author(s):  
Koji Inui ◽  
Ryusuke Kakigi

We previously examined the cortical processing in response to somatosensory, auditory and noxious stimuli, using magnetoencephalography in humans. Here, we performed a similar analysis of the processing in the human visual cortex for comparative purposes. After flash stimuli applied to the right eye, activations were found in eight cortical areas: the left medial occipital area around the calcarine fissure (primary visual cortex, V1), the left dorsomedial area around the parietooccipital sulcus (DM), the ventral (MOv) and dorsal (MOd) parts of the middle occipital area of bilateral hemispheres, the left temporo-occipito-parietal cortex corresponding to human MT/V5 (hMT), and the ventral surface of the medial occipital area (VO) of the bilateral hemispheres. The mean onset latencies of each cortical activity were (in ms): 27.5 (V1), 31.8 (DM), 32.8 (left MOv), 32.2 (right MOv), 33.4 (left MOd), 32.3 (right MOv), 37.8 (hMT), 46.9 (left VO), and 46.4 (right VO). Therefore the cortico-cortical connection time of visual processing at the early stage was 4–6 ms, which is very similar to the time delay between sequential activations in somatosensory and auditory processing. In addition, the activities in V1, MOd, DM, and hMT showed a similar biphasic waveform with a reversal of polarity after 10 ms, which is a common activation profile of the cortical activity for somatosensory, auditory, and pain-evoked responses. These results suggest similar mechanisms of the serial cortico-cortical processing of sensory information among all sensory areas of the cortex.


2015 ◽  
Vol 27 (7) ◽  
pp. 1344-1359 ◽  
Author(s):  
Sara Jahfari ◽  
Lourens Waldorp ◽  
K. Richard Ridderinkhof ◽  
H. Steven Scholte

Action selection often requires the transformation of visual information into motor plans. Preventing premature responses may entail the suppression of visual input and/or of prepared muscle activity. This study examined how the quality of visual information affects frontobasal ganglia (BG) routes associated with response selection and inhibition. Human fMRI data were collected from a stop task with visually degraded or intact face stimuli. During go trials, degraded spatial frequency information reduced the speed of information accumulation and response cautiousness. Effective connectivity analysis of the fMRI data showed action selection to emerge through the classic direct and indirect BG pathways, with inputs deriving form both prefrontal and visual regions. When stimuli were degraded, visual and prefrontal regions processing the stimulus information increased connectivity strengths toward BG, whereas regions evaluating visual scene content or response strategies reduced connectivity toward BG. Response inhibition during stop trials recruited the indirect and hyperdirect BG pathways, with input from visual and prefrontal regions. Importantly, when stimuli were nondegraded and processed fast, the optimal stop model contained additional connections from prefrontal to visual cortex. Individual differences analysis revealed that stronger prefrontal-to-visual connectivity covaried with faster inhibition times. Therefore, prefrontal-to-visual cortex connections appear to suppress the fast flow of visual input for the go task, such that the inhibition process can finish before the selection process. These results indicate response selection and inhibition within the BG to emerge through the interplay of top–down adjustments from prefrontal and bottom–up input from sensory cortex.


2005 ◽  
Vol 93 (4) ◽  
pp. 1823-1826 ◽  
Author(s):  
Peter Neri

Three recent studies offer new insights into the way visual cortex handles binocular disparity signals. Two of these studies recorded from single neurons in two different visual areas of the monkey brain, one (V5/MT) in dorsal and one (V4) in ventral cortex. While V5/MT neurons respond similarly to neurons in primary visual cortex (V1), V4 neurons appear to reflect a more advanced stage in the analysis of retinal disparity, closer to the perceptual experience of stereoscopic depth. Both studies are consistent with a third study using fMRI to address similar questions in humans. Together with previous evidence, these results suggest a new framework for understanding stereoscopic processing based on the separation between ventral and dorsal streams in visual cortex.


Sign in / Sign up

Export Citation Format

Share Document