Temporal Analysis of the Flow From V1 to the Extrastriate Cortex in Humans

2006 ◽  
Vol 96 (2) ◽  
pp. 775-784 ◽  
Author(s):  
Koji Inui ◽  
Ryusuke Kakigi

We previously examined the cortical processing in response to somatosensory, auditory and noxious stimuli, using magnetoencephalography in humans. Here, we performed a similar analysis of the processing in the human visual cortex for comparative purposes. After flash stimuli applied to the right eye, activations were found in eight cortical areas: the left medial occipital area around the calcarine fissure (primary visual cortex, V1), the left dorsomedial area around the parietooccipital sulcus (DM), the ventral (MOv) and dorsal (MOd) parts of the middle occipital area of bilateral hemispheres, the left temporo-occipito-parietal cortex corresponding to human MT/V5 (hMT), and the ventral surface of the medial occipital area (VO) of the bilateral hemispheres. The mean onset latencies of each cortical activity were (in ms): 27.5 (V1), 31.8 (DM), 32.8 (left MOv), 32.2 (right MOv), 33.4 (left MOd), 32.3 (right MOv), 37.8 (hMT), 46.9 (left VO), and 46.4 (right VO). Therefore the cortico-cortical connection time of visual processing at the early stage was 4–6 ms, which is very similar to the time delay between sequential activations in somatosensory and auditory processing. In addition, the activities in V1, MOd, DM, and hMT showed a similar biphasic waveform with a reversal of polarity after 10 ms, which is a common activation profile of the cortical activity for somatosensory, auditory, and pain-evoked responses. These results suggest similar mechanisms of the serial cortico-cortical processing of sensory information among all sensory areas of the cortex.

2011 ◽  
Vol 23 (11) ◽  
pp. 3410-3418 ◽  
Author(s):  
Greg L. West ◽  
Adam A. K. Anderson ◽  
Susanne Ferber ◽  
Jay Pratt

When multiple stimuli are concurrently displayed in the visual field, they must compete for neural representation at the processing expense of their contemporaries. This biased competition is thought to begin as early as primary visual cortex, and can be driven by salient low-level stimulus features. Stimuli important for an organism's survival, such as facial expressions signaling environmental threat, might be similarly prioritized at this early stage of visual processing. In the present study, we used ERP recordings from striate cortex to examine whether fear expressions can bias the competition for neural representation at the earliest stage of retinotopic visuo-cortical processing when in direct competition with concurrently presented visual information of neutral valence. We found that within 50 msec after stimulus onset, information processing in primary visual cortex is biased in favor of perceptual representations of fear at the expense of competing visual information (Experiment 1). Additional experiments confirmed that the facial display's emotional content rather than low-level features is responsible for this prioritization in V1 (Experiment 2), and that this competition is reliant on a face's upright canonical orientation (Experiment 3). These results suggest that complex stimuli important for an organism's survival can indeed be prioritized at the earliest stage of cortical processing at the expense of competing information, with competition possibly beginning before encoding in V1.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sina Tafazoli ◽  
Houman Safaai ◽  
Gioia De Franceschi ◽  
Federica Bianca Rosselli ◽  
Walter Vanzella ◽  
...  

Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects.


2021 ◽  
Author(s):  
Philip R L Parker ◽  
Eliott T T Abe ◽  
Natalie T Beatie ◽  
Emmalyn S P Leonard ◽  
Dylan M Martins ◽  
...  

In natural contexts, sensory processing and motor output are closely coupled, which is reflected in the fact that many brain areas contain both sensory and movement signals. However, standard reductionist paradigms decouple sensory decisions from their natural motor consequences, and head-fixation prevents the natural sensory consequences of self-motion. In particular, movement through the environment provides a number of depth cues beyond stereo vision that are poorly understood. To study the integration of visual processing and motor output in a naturalistic task, we investigated distance estimation in freely moving mice. We found that mice use vision to accurately jump across a variable gap, thus directly coupling a visual computation to its corresponding ethological motor output. Monocular eyelid suture did not affect performance, thus mice can use cues that do not depend on binocular disparity and stereo vision. Under monocular conditions, mice performed more vertical head movements, consistent with the use of motion parallax cues, and optogenetic suppression of primary visual cortex impaired task performance. Together, these results show that mice can use monocular cues, relying on visual cortex, to accurately judge distance. Furthermore, this behavioral paradigm provides a foundation for studying how neural circuits convert sensory information into ethological motor output.


2017 ◽  
Vol 114 (22) ◽  
pp. E4501-E4510 ◽  
Author(s):  
Job van den Hurk ◽  
Marc Van Baelen ◽  
Hans P. Op de Beeck

To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience.


2020 ◽  
Author(s):  
E Zamboni ◽  
VG Kemper ◽  
NR Goncalves ◽  
K Jia ◽  
VM Karlaftis ◽  
...  

AbstractAdapting to the environment statistics by reducing brain responses to repetitive sensory information is key for efficient information processing. Yet, the fine-scale computations that support this adaptive processing in the human brain remain largely unknown. Here, we capitalize on the sub-millimetre resolution afforded by ultra-high field imaging to examine BOLD-fMRI signals across cortical depth and discern competing hypotheses about the brain mechanisms (feedforward vs. feedback) that mediate adaptive visual processing. We demonstrate suppressive recurrent processing within visual cortex, as indicated by stronger BOLD decrease in superficial than middle and deeper layers for gratings that were repeatedly presented at the same orientation. Further, we show dissociable connectivity mechanisms for adaptive processing: enhanced feedforward connectivity within visual cortex, while feedback occipito-parietal connectivity, reflecting top-down influences on visual processing. Our findings provide evidence for a circuit of local recurrent and feedback interactions that mediate rapid brain plasticity for adaptive information processing.


2001 ◽  
Vol 86 (4) ◽  
pp. 2054-2068 ◽  
Author(s):  
Benjamin T. Backus ◽  
David J. Fleet ◽  
Andrew J. Parker ◽  
David J. Heeger

Stereoscopic depth perception is based on binocular disparities. Although neurons in primary visual cortex (V1) are selective for binocular disparity, their responses do not explicitly code perceived depth. The stereoscopic pathway must therefore include additional processing beyond V1. We used functional magnetic resonance imaging (fMRI) to examine stereo processing in V1 and other areas of visual cortex. We created stereoscopic stimuli that portrayed two planes of dots in depth, placed symmetrically about the plane of fixation, or else asymmetrically with both planes either nearer or farther than fixation. The interplane disparity was varied parametrically to determine the stereoacuity threshold (the smallest detectable disparity) and the upper depth limit (largest detectable disparity). fMRI was then used to quantify cortical activity across the entire range of detectable interplane disparities. Measured cortical activity covaried with psychophysical measures of stereoscopic depth perception. Activity increased as the interplane disparity increased above the stereoacuity threshold and dropped as interplane disparity approached the upper depth limit. From the fMRI data and an assumption that V1 encodes absolute retinal disparity, we predicted that the mean response of V1 neurons should be a bimodal function of disparity. A post hoc analysis of electrophysiological recordings of single neurons in macaques revealed that, although the average firing rate was a bimodal function of disparity (as predicted), the precise shape of the function cannot fully explain the fMRI data. Although there was widespread activity within the extrastriate cortex (consistent with electrophysiological recordings of single neurons), area V3A showed remarkable sensitivity to stereoscopic stimuli, suggesting that neurons in V3A may play a special role in the stereo pathway.


2016 ◽  
Author(s):  
L Federico Rossi ◽  
Robert C Wykes ◽  
Dimitri M Kullmann ◽  
Matteo Carandini

Focal epilepsy involves excessive cortical activity that propagates both locally and distally. Does this propagation follow the same routes as normal cortical activity? We pharmacologically induced focal seizures in primary visual cortex (V1) of awake mice, and compared their propagation to the retinotopic organization of V1 and higher visual areas. We used simultaneous local field potential recordings and widefield imaging of a genetically encoded calcium indicator to measure prolonged seizures (ictal events) and brief interictal events. Both types of event are orders of magnitude larger than normal visual responses, and both start as standing waves: synchronous elevated activity in the V1 focus and in homotopic locations in higher areas, i.e. locations with matching retinotopic preference. Following this common beginning, however, seizures persist and propagate both locally and into homotopic distal regions, and eventually invade all of visual cortex and beyond. We conclude that seizure initiation resembles the initiation of interictal events, and seizure propagation respects the connectivity underlying normal visual processing.


2014 ◽  
Vol 112 (2) ◽  
pp. 276-286 ◽  
Author(s):  
Andre G. Machado ◽  
Raghavan Gopalakrishnan ◽  
Ela B. Plow ◽  
Richard C. Burgess ◽  
John C. Mosher

Anticipating pain is important for avoiding injury; however, in chronic pain patients, anticipatory behavior can become maladaptive, leading to sensitization and limiting function. Knowledge of networks involved in pain anticipation and conditioning over time could help devise novel, better-targeted therapies. With the use of magnetoencephalography, we evaluated in 10 healthy subjects the neural processing of pain anticipation. Anticipatory cortical activity elicited by consecutive visual cues that signified imminent painful stimulus was compared with cues signifying nonpainful and no stimulus. We found that the neural processing of visually evoked pain anticipation involves the primary visual cortex along with cingulate and frontal regions. Visual cortex could quickly and independently encode and discriminate between visual cues associated with pain anticipation and no pain during preconscious phases following object presentation. When evaluating the effect of task repetition on participating cortical areas, we found that activity of prefrontal and cingulate regions was mostly prominent early on when subjects were still naive to a cue's contextual meaning. Visual cortical activity was significant throughout later phases. Although visual cortex may precisely and time efficiently decode cues anticipating pain or no pain, prefrontal areas establish the context associated with each cue. These findings have important implications toward processes involved in pain anticipation and maladaptive pain conditioning.


2000 ◽  
Vol 84 (6) ◽  
pp. 2984-2997 ◽  
Author(s):  
Per Jenmalm ◽  
Seth Dahlstedt ◽  
Roland S. Johansson

Most objects that we manipulate have curved surfaces. We have analyzed how subjects during a prototypical manipulatory task use visual and tactile sensory information for adapting fingertip actions to changes in object curvature. Subjects grasped an elongated object at one end using a precision grip and lifted it while instructed to keep it level. The principal load of the grasp was tangential torque due to the location of the center of mass of the object in relation to the horizontal grip axis joining the centers of the opposing grasp surfaces. The curvature strongly influenced the grip forces required to prevent rotational slips. Likewise the curvature influenced the rotational yield of the grasp that developed under the tangential torque load due to the viscoelastic properties of the fingertip pulps. Subjects scaled the grip forces parametrically with object curvature for grasp stability. Moreover in a curvature-dependent manner, subjects twisted the grasp around the grip axis by a radial flexion of the wrist to keep the desired object orientation despite the rotational yield. To adapt these fingertip actions to object curvature, subjects could use both vision and tactile sensibility integrated with predictive control. During combined blindfolding and digital anesthesia, however, the motor output failed to predict the consequences of the prevailing curvature. Subjects used vision to identify the curvature for efficient feedforward retrieval of grip force requirements before executing the motor commands. Digital anesthesia caused little impairment of grip force control when subjects had vision available, but the adaptation of the twist became delayed. Visual cues about the form of the grasp surface obtained before contact was used to scale the grip force, whereas the scaling of the twist depended on visual cues related to object movement. Thus subjects apparently relied on different visuomotor mechanisms for adaptation of grip force and grasp kinematics. In contrast, blindfolded subjects used tactile cues about the prevailing curvature obtained after contact with the object for feedforward adaptation of both grip force and twist. We conclude that humans use both vision and tactile sensibility for feedforward parametric adaptation of grip forces and grasp kinematics to object curvature. Normal control of the twist action, however, requires digital afferent input, and different visuomotor mechanisms support the control of the grasp twist and the grip force. This differential use of vision may have a bearing to the two-stream model of human visual processing.


2021 ◽  
pp. 1-14
Author(s):  
Jie Huang ◽  
Paul Beach ◽  
Andrea Bozoki ◽  
David C. Zhu

Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Aβ) and neurofibrillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order association areas to lower-order areas and then primary visual area (V1) with disease progression. Objective: This study investigated the effect of AD severity on visual functional network. Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC) network and a face-evoked visual-processing network were identified for each group. Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing activation in the lower-order areas. Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.


Sign in / Sign up

Export Citation Format

Share Document