scholarly journals Ankle Load Modulates Hip Kinetics and EMG During Human Locomotion

2009 ◽  
Vol 101 (4) ◽  
pp. 2062-2076 ◽  
Author(s):  
Keith E. Gordon ◽  
Ming Wu ◽  
Jennifer H. Kahn ◽  
Yasin Y. Dhaher ◽  
Brian D. Schmit

The purpose of this research was to examine the role of isolated ankle-foot load in regulating locomotor patterns in humans with and without spinal cord injury (SCI). We used a powered ankle-foot orthosis to unilaterally load the ankle and foot during robotically assisted airstepping. The load perturbation consisted of an applied dorsiflexion torque designed to stimulate physiological load sensors originating from the ankle plantar flexor muscles and pressure receptors on the sole of the foot. We hypothesized that 1) the response to load would be phase specific with enhanced ipsilateral extensor muscle activity and joint torque occurring when unilateral ankle-foot load was provided during the stance phase of walking and 2) that the phasing of subject produced hip moments would be modulated by varying the timing of the applied ankle-foot load within the gait cycle. As expected, both SCI and nondisabled subjects demonstrated a significant increase ( P < 0.05) in peak hip extension moments (142 and 43% increase, respectively) when given ankle-foot load during the stance phase compared with no ankle-foot load. In SCI subjects, this enhanced hip extension response was accompanied by significant increases ( P < 0.05) in stance phase gluteus maximus activity (27% increase). In addition, when ankle-foot load was applied either 200 ms earlier or later within the gait cycle, SCI subjects demonstrated significant phase shifts (∼100 ms) in hip moment profile ( P < 0.05; i.e., the onset of hip extension moments occurred earlier when ankle-foot load was applied earlier). This study provides new insights into how individuals with spinal cord injury use sensory feedback from ankle-foot load afferents to regulate hip joint moments and muscle activity during gait.

2004 ◽  
Vol 92 (2) ◽  
pp. 673-685 ◽  
Author(s):  
Robert E. Steldt ◽  
Brian D. Schmit

Individuals with chronic spinal cord injury (SCI) often demonstrate multijoint reflex activity that is clinically classified as an extensor spasm. These responses are commonly observed in conjunction with an imposed extension movement of the hips, such as movement from a sit to a supine position. Coincidentally, afferent feedback from hip proprioceptors has also been implicated in the control of locomotion in the spinalized cat. Because of this concurrence, we postulated that extensor spasms that are triggered by hip extension might involve activation of organized interneuronal circuits that also have a role in locomotion. If true, imposed oscillations of the hip would be expected to produce activity of the leg musculature in a locomotor pattern. Furthermore, this muscle activity would be entrained to the hip movement. The right hip joints of 10 individuals with chronic SCI, consisting of both complete [American Spinal Injury Association (ASIA) A] and incomplete (ASIA B,C) injuries, were subjected to ramp and hold (10 s) movements at 60°/s and sinusoidal oscillations at 1.2, 1.88, and 2.2 rad/s over ranges from 40 to –15° (±5°) using a custom servomotor system. Surface EMG from seven lower extremity muscles and sagittal-plane joint torques were recorded to characterize the response. Ramp and hold perturbations produced coactivation at the hip, knee, and ankle joints, with a long duration (5–10 s). Sinusoidal perturbations yielded consistent muscle timing patterns that resulted in alternating flexor and extensor joint torques. EMG and joint torques were commonly entrained to the frequency of movement, with rectus femoris, vastus medialis, and soleus activity coinciding with hip extension and medial hamstrings activity occurring during hip flexion. Individual muscle timing patterns were consistent with hip position during normal gait, except for the vastus medialis. These results suggest that reflexes associated with extensor spasms may occur through organized interneuronal pathways, such as spinal centers for locomotion.


2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Antonino Casabona ◽  
Maria Stella Valle ◽  
Claudio Dominante ◽  
Luca Laudani ◽  
Maria Pia Onesta ◽  
...  

The benefits of functional electrical stimulation during cycling (FES-cycling) have been ascertained following spinal cord injury. The instrumented pendulum test was applied to chronic paraplegic patients to investigate the effects of FES-cycling of different duration (20-min vs. 40-min) on biomechanical and electromyographic characterization of knee mobility. Seven adults with post-traumatic paraplegia attended two FES-cycling sessions, a 20-min and a 40-min one, in a random order. Knee angular excursion, stiffness and viscosity were measured using the pendulum test before and after each session. Surface electromyographic activity was recorded from the rectus femoris (RF) and biceps femoris (BF) muscles. FES-cycling led to reduced excursion (p < 0.001) and increased stiffness (p = 0.005) of the knee, which was more evident after the 20-min than 40-min session. Noteworthy, biomechanical changes were associated with an increase of muscle activity and changes in latency of muscle activity only for 20-min, with anticipated response times for RF (p < 0.001) and delayed responses for BF (p = 0.033). These results indicate that significant functional changes in knee mobility can be achieved by FES-cycling for 20 min, as evaluated by the pendulum test in patients with chronic paraplegia. The observed muscle behaviour suggests modulatory effects of exercise on spinal network aimed to partially restore automatic neuronal processes.


2015 ◽  
Vol 27 (3) ◽  
pp. 791-794 ◽  
Author(s):  
Hidetaka Imagita ◽  
Akira Nishikawa ◽  
Susumu Sakata ◽  
Yasue Nishii ◽  
Akira Minematsu ◽  
...  

2016 ◽  
Vol 28 (3) ◽  
pp. 881-885 ◽  
Author(s):  
Satoshi Okahara ◽  
Masataka Kataoka ◽  
Kuniharu Okuda ◽  
Masato Shima ◽  
Keiko Miyagaki ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115791 ◽  
Author(s):  
Michael A. Petrie ◽  
Manish Suneja ◽  
Elizabeth Faidley ◽  
Richard K. Shields

2009 ◽  
Vol 101 (2) ◽  
pp. 969-979 ◽  
Author(s):  
Monica A. Gorassini ◽  
Jonathan A. Norton ◽  
Jennifer Nevett-Duchcherer ◽  
Francois D. Roy ◽  
Jaynie F. Yang

Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury.


2003 ◽  
Vol 90 (5) ◽  
pp. 3232-3241 ◽  
Author(s):  
Brian D. Schmit ◽  
T. George Hornby ◽  
Vicki M. Tysseling-Mattiace ◽  
Ela N. Benz

Local sign withdrawal, a reflex to direct the limb away from noxious cutaneous stimuli, is thought to be indicative of a modular organization of the spinal cord. To assess the integrity of such an organization of the spinal cord in chronic human spinal cord injury (SCI), we tested the electromyogram (EMG) and joint torque responses to cutaneous stimuli applied to 6 locations of the leg in 10 SCI volunteers and 3 spinal-intact controls. The 6 locations included the medial arch of the foot, the second metatarsal, the dorsum, the region over the sural nerve at the lateral malleolus, and the anterior and posterior aspects of the lower leg. Although spinal-intact subjects demonstrated local sign withdrawal, the data from SCI subjects indicated that an invariant flexion response pattern was produced regardless of stimulus location. Ankle dorsiflexion and hip flexion were produced in all subjects at all locations and no difference in the ratio of hip:ankle torques could be detected for the 6 test locations. A windup-crossover test, employing a sequence of 6 stimuli at 1-s intervals was used to assess whether common neuronal pathways were responsible for the loss of modular organization. An additional 10 SCI volunteers were tested using stimuli in which the stimulus location was switched between the 2nd and 3rd stimulus of the test sequence. The response to the crossover stimulus more closely resembled the response to the 3rd stimulus of a windup sequence than a response without conditioning stimuli. These results indicate that increased excitability produced by windup at one stimulus site is maintained at the 2nd site. This observation suggests that deep dorsal horn neurons, typically associated with musculotopic mapping, may be reorganized in chronic spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document