stimulus location
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 29)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 11 (8) ◽  
pp. 1071
Author(s):  
Eleanor S. Smith ◽  
Trevor J. Crawford

The memory-guided saccade task requires the remembrance of a peripheral target location, whilst inhibiting the urge to make a saccade ahead of an auditory cue. The literature has explored the endophenotypic deficits associated with differences in target laterality, but less is known about target amplitude. The data presented came from Crawford et al. (1995), employing a memory-guided saccade task among neuroleptically medicated and non-medicated patients with schizophrenia (n = 31, n = 12), neuroleptically medicated and non-medicated bipolar affective disorder (n = 12, n = 17), and neurotypical controls (n = 30). The current analyses explore the relationships between memory-guided saccades toward targets with different eccentricities (7.5° and 15°), the discernible behaviour exhibited amongst diagnostic groups, and cohorts distinguished based on psychotic symptomatology. Saccade gain control and final eye position were reduced among medicated-schizophrenia patients. These metrics were reduced further among targets with greater amplitudes (15°), indicating greater deficit. The medicated cohort exhibited reduced gain control and final eye positions in both amplitudes compared to the non-medicated cohort, with deficits markedly observed for the furthest targets. No group differences in symptomatology (positive and negative) were reported, however, a greater deficit was observed toward the larger amplitude. This suggests that within the memory-guided saccade paradigm, diagnostic classification is more prominent in characterising disparities in saccade performance than symptomatology.


2021 ◽  
Author(s):  
Tim van Mourik ◽  
Peter J. Koopmans ◽  
Lauren J. Bains ◽  
David G. Norris ◽  
Janneke F.M. Jehee

AbstractDirecting spatial attention towards a particular stimulus location enhances cortical responses at corresponding regions in cortex. How attention modulates the laminar response profile within the attended region, however, remains unclear. In this paper, we use high field (7T) fMRI to investigate the effects of attention on laminar activity profiles in areas V1-V3; both when a stimulus was presented to the observer, and in the absence of visual stimulation. Replicating previous findings, we find robust increases in the overall BOLD response for attended regions in cortex, both with and without visual stimulation. When analyzing the BOLD response across the individual layers in visual cortex, we observed no evidence for laminar-specific differentiation with attention. We offer several potential explanations for these results, including theoretical, methodological and technical reasons. Additionally, we provide all data and pipelines openly, in order to promote analytic consistency across layer-specific studies, improve reproducibility, and decrease the false positive rate as a result of analytical flexibility.


Author(s):  
Guus Christian van Bentum ◽  
Marc Mathijs van Wanrooij ◽  
A. John Van Opstal

To program a goal-directed response in the presence of acoustic reflections, the audio-motor system should suppress the detection of time-delayed sources. We examined the effects of spatial separation and inter-stimulus delay on the ability of human listeners to localize a pair of broadband sounds in the horizontal plane. Participants indicated how many sounds were heard and where these were perceived by making one or two head-orienting localization responses. Results suggest that perceptual fusion of the two sounds depends on delay and spatial separation. Leading and lagging stimuli in close spatial proximity required longer stimulus delays to be perceptually separated than those further apart. Whenever participants heard one sound, their localization responses for synchronous sounds were oriented to a weighted average of both source locations. For short delays, responses were directed towards the leading stimulus location. Increasing spatial separation enhanced this effect. For longer delays, responses were again directed towards a weighted average. When participants perceived two sounds, the first and the second response were directed to either of the leading and lagging source locations. Perceived locations were interchanged often in their temporal order (in ~40% of trials). We show that the percept of two sounds occurring requires sufficient spatiotemporal separation, after which localization can be performed with high accuracy. We propose that the percept of temporal order of two concurrent sounds results from a different process than localization, and discuss how dynamic lateral excitatory-inhibitory interactions within a spatial sensorimotor map could explain the findings.


2020 ◽  
Author(s):  
Alina Peter ◽  
Benjamin J. Stauch ◽  
Katharine Shapcott ◽  
Kleopatra Kouroupaki ◽  
Joscha T. Schmiedt ◽  
...  

When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here we show in awake macaque area V1 that both, repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects showed some persistence on the timescale of minutes. Further, gamma increases were specific to the presented stimulus location. Importantly, repetition effects on gamma and on firing rates generalized to natural images. These findings suggest that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters, both for generating efficient stimulus responses and possibly for memory formation.


2020 ◽  
Author(s):  
Jenna Cao ◽  
Nickolas F. Goenadi ◽  
Emma L. Neto ◽  
Isabel R. Shapiro

The present study aimed to determine whether stimulus location (central or peripheral) or eye viewing condition (binocular, dominant monocular, or non-dominant monocular) had a greater magnitude of effect on perception of the sound-induced flash illusion (SIFI). Both the fission illusion (when one flash paired with two beeps is perceived as two flashes) and the fusion illusion (when two flashes paired with one beep are perceived as one flash) were measured in all location and eye viewing conditions. Analyses revealed significant fission and fusion illusions in all conditions. Additionally, we found significant differences in central and peripheral criterion levels that were driven by differences between binocular and monocular viewing conditions. Data analyses demonstrated that location of the visual stimulus had a greater magnitude of effect on the illusion than eye viewing condition. Our findings add to the growing literature supporting the mechanisms underlying central-peripheral eccentricity, and contradict the optimal integration model of the SIFI. The implications of these results would help better our understanding of the SIFI and audiovisual integration. Future studies must be conducted to confirm these results in a more representative sample.


Sign in / Sign up

Export Citation Format

Share Document