pendulum test
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 29)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Caroline Adams ◽  
Tom Allen ◽  
Terry Senior ◽  
David James ◽  
Nick Hamilton

The wrist is a common injury site for snowboarders who often fall onto an outstretched hand. Wrist protectors are worn by some snowboarders to prevent wrist injuries by attenuating impact forces and limiting wrist extension. This paper presents a bespoke pendulum test device for impacting wrist protectors when fitted to a wrist surrogate. The rig can replicate injury risk scenarios, while measuring temporal forces and wrist extension angles. Results from testing 12 snowboarding wrist protectors are presented, including differences in peak vertical force, the time to reach this peak, and energy absorption between products. When compared to an unprotected surrogate, all 12 products lowered the peak force by at least 24% and increased the time to reach this peak by at least 1.8 times. Due to the severity of the load case employed, none of the products lowered the impact force below 2.8 kN, which is the value presented in the literature to fracture a cadaveric wrist. The developed rig could be used to support the development of new wrist protectors, as well as the development of finite element models for predicting wrist protector performance.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1180
Author(s):  
Matúš Kováč ◽  
Matej Brna ◽  
Martin Decký

This article deals with the possibility of predicting skid resistance based on non-contact scanning of the road surface. The study is based on comparing pavement texture parameters with coefficients of friction measured on a wide variety of road surfaces, while other test conditions were the same and constant. The measurements of the coefficient of friction were performed using a pendulum tester. The pavement texture was measured using a static road scanner, and 85 different 3D texture parameters were calculated. The study shows that the determination of the friction using only single texture parameters is not sufficient. Based on this statement, the next part of the research analyzed the influence of the mutual combination of surface texture parameters. A linear regression model was chosen to determine the friction coefficient prediction formula based on the combination of texture parameters. Statistically, the most significant parameters in the prediction model proved to be the valley material portion, characterizing the microtexture, and the arithmetic mean curvature, characterizing the pavement macrotexture. The obtained regression model proved to be statistically significant with R2 = 0.81 for Pendulum Test Value prediction.


2021 ◽  
Vol 10 (15) ◽  
pp. 3267
Author(s):  
Evan B. Sandler ◽  
Kyle Condon ◽  
Edelle C. Field-Fote

Transcutaneous spinal stimulation (TSS) and whole-body vibration (WBV) each have a robust ability to activate spinal afferents. Both forms of stimulation have been shown to influence spasticity in persons with spinal cord injury (SCI), and may be viable non-pharmacological approaches to spasticity management. In thirty-two individuals with motor-incomplete SCI, we used a randomized crossover design to compare single-session effects of TSS versus WBV on quadriceps spasticity, as measured by the pendulum test. TSS (50 Hz, 400 μs, 15 min) was delivered in supine through a cathode placed over the thoracic spine (T11-T12) and an anode over the abdomen. WBV (50 Hz; eight 45-s bouts) was delivered with the participants standing on a vibration platform. Pendulum test first swing excursion (FSE) was measured at baseline, immediately post-intervention, and 15 and 45 min post-intervention. In the whole-group analysis, there were no between- or within-group differences of TSS and WBV in the change from baseline FSE to any post-intervention timepoints. Significant correlations between baseline FSE and change in FSE were associated with TSS at all timepoints. In the subgroup analysis, participants with more pronounced spasticity showed significant decreases in spasticity immediately post-TSS and 45 min post-TSS. TSS and WBV are feasible physical therapeutic interventions for the reduction of spasticity, with persistent effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yin-Kai Dean Huang ◽  
Wei Li ◽  
Yi-Lin Chou ◽  
Erica Shih-Wei Hung ◽  
Jiunn-Horng Kang

AbstractSpasticity measured by manual tests, such as modified Ashworth scale (MAS), may not sufficiently reflect mobility function in stroke survivors. This study aims to identify additional ambulatory information provided by the pendulum test. Clinical assessments including Brünnstrom recovery stage, manual muscle test, MAS, Tinetti test (TT), Timed up and go test, 10-m walk test (10-MWT), and Barthel index were applied to 40 ambulant chronic stroke patients. The pendular parameters, first swing excursion (FSE) and relaxation index (RI), were extracted by an electrogoniometer. The correlations among these variables were analyzed by the Spearman and Pearson partial correlation tests. After controlling the factor of motor recovery (Brünnstrom recovery stage), the MAS of paretic knee extensor was negatively correlated with the gait score of TT (r =  − 0.355, p = 0.027), while the FSE revealed positive correlations to the balance score of TT (r = 0.378, p = 0.018). RI were associated with the comfortable speed of 10-MWT (r = 0.367, p = 0.022). These results suggest a decrease of knee extensor spasticity links to a better gait and balance in chronic stroke patients. The pendular parameters can provide additional ambulatory information, as complementary to the MAS. The pendulum test can be a potential tool for patient selection and outcome assessment after spasticity treatments in chronic stroke population.


Measurement ◽  
2021 ◽  
pp. 109618
Author(s):  
W. Guo ◽  
L. Chu ◽  
T.F. Fwa
Keyword(s):  

2021 ◽  
pp. 1-10
Author(s):  
Anastasia Zarkou ◽  
Edelle C. Field-Fote

BACKGROUND: A number of physiological and atmospheric variables are believed to increase spasticity in persons with spinal cord injury (SCI) based on self-reported measures, however, there is limited objective evidence about the influence of these variables on spasticity. OBJECTIVE: We investigated the relationship between physiological/ atmospheric variables and level of spasticity in individuals with SCI. METHODS: In 53 participants with motor-incomplete SCI, we assessed the influence of age, time since injury, sex, injury severity, neurological level of injury, ability to walk, antispasmodic medication use, temperature, humidity, and barometric pressure on quadriceps spasticity. Spasticity was assessed using the pendulum test first swing excursion (FSE. To categorize participants based on spasticity level, we performed cluster analysis. We used multivariate stepwise regression to determine variables associated with spasticity level. RESULTS: Three spasticity groups were identified based on severity level: low, moderate, and high. The regression analysis revealed that only walking ability and temperature were significantly related to spasticity. CONCLUSIONS: These outcomes validate the self-reported perception of people with SCI that low temperatures worsen spasticity. The findings refine prior evidence that people with motor-incomplete SCI have higher levels of spasticity, showing that those with sufficient motor function to walk have the highest levels of spasticity.


2021 ◽  
Vol 352 ◽  
pp. 00007
Author(s):  
Ján Brodniansky ◽  
Ľuboš Balcierák ◽  
Martin Magura ◽  
Ján Brodniansky

The paper presents testing of glass panels, static test and dynamic test by hard body impact. Pendulum test is presented. Test procedure is described as well as tested samples and their material characteristics. The glass type of tested samples were laminated and float glass, as well as the age of the glass samples were different.


Sign in / Sign up

Export Citation Format

Share Document