scholarly journals Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach

2010 ◽  
Vol 42A (3) ◽  
pp. 188-199 ◽  
Author(s):  
S. D. McCarthy ◽  
S. M. Waters ◽  
D. A. Kenny ◽  
M. G. Diskin ◽  
R. Fitzpatrick ◽  
...  

In high-yielding dairy cows the liver undergoes extensive physiological and biochemical changes during the early postpartum period in an effort to re-establish metabolic homeostasis and to counteract the adverse effects of negative energy balance (NEB). These adaptations are likely to be mediated by significant alterations in hepatic gene expression. To gain new insights into these events an energy balance model was created using differential feeding and milking regimes to produce two groups of cows with either a mild (MNEB) or severe NEB (SNEB) status. Cows were slaughtered and liver tissues collected on days 6–7 of the first follicular wave postpartum. Using an Affymetrix 23k oligonucleotide bovine array to determine global gene expression in hepatic tissue of these cows, we found a total of 416 genes (189 up- and 227 downregulated) to be altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with widespread changes in gene expression classified into 36 gene networks including those associated with lipid metabolism, connective tissue development and function, cell signaling, cell cycle, and metabolic diseases, the three most significant of which are discussed in detail. SNEB cows displayed reduced expression of transcription activators and signal transducers that regulate the expression of genes and gene networks associated with cell signaling and tissue repair. These alterations are linked with increased expression of abnormal cell cycle and cellular proliferation associated pathways. This study provides new information and insights on the effect of SNEB on gene expression in high-yielding Holstein Friesian dairy cows in the early postpartum period.

2017 ◽  
Vol 45 (1) ◽  
pp. 8
Author(s):  
Tatiele Mumbach ◽  
Raquel Fraga e Silva Raimondo ◽  
Claudia Faccio Demarco ◽  
Vanessa Oliveira Freitas ◽  
Rodrigo Chaves Barcellos Grazziotin ◽  
...  

Background: In order to reduce the effects of a negative energy balance, some measures have been taken into account in nutritional management during the transition period. The use of yeast, has been a good alternative used to improve the rumen metabolism and helping the adjustment of the microbiotato the new diet. The aim of the study was to evaluate the effects of supplementing a combination of yeast culture and hydrolyzed yeast on the metabolism of dairy cows during the transition period.Materials, Methods & Results: The experiment was conducted in a semi-extensive system, using 20 Holstein cows, divided equally into a control group (CG) and a supplemented group (SG). The SG received 28 g/animal/day of a combination of yeast culture and hydrolyzed yeast from 20 ± 2 days pre-calving until early lactation (18 ± 3 days). Serum concentrations of non-esterified fatty acids (NEFA), albumin and urea were determined at calving, and for three time points during the early postpartum period and three time points during the early lactation period. Regarding energy metabolism, prepartum concentrations of NEFA were higher than the physiological standard in both groups. However, NEFA, albumin and urea decreased during the early postpartum period in the supplemented animals and could be attributed to the yeast in enhancing ruminal microorganisms’ cellulolytic capacity, increasing fibre digestibility and starch utilization.Discussion: The increased concentration of non-esterified fatty acids (NEFA) due to the mobilization of fat deposits that happens in the transition period, especially in the postpartum period reflects the cow’s adaptation to the negative energy balance (NEB). The lower concentrations of NEFA observed in the present study could be attributed to the effect of the yeast in enhancing the ruminal microorganisms’ cellulolytic capacity. The control cows had a BCS within the recommended range while the supplemented group had it close to the minimal limit proposed for this period. Thus, supplemented cows lost less BCS during the early postpartum period, had a lower BCS loss during the experimental period and had lower NEFA concentration that the CG. It was possible to observe a difference in serum albumin and urea between treatments only in the postpartum period. Besides showing no significant effect in BCS on prepartum period, control cows had a BCS within the recommended range while the supplemented group had it close to the minimal limit proposed for this period. Cows with high BCS prepartum had higher plasma NEFA before and after calving. It can be observed in the present study in both groups. However, a positive effect in prevent subclinical disorders might be attributed to YC, since the SG showed low NEFA plasma levels compared to the CG.  Thus, supplemented cows lost less BCS during the early postpartum period, had a lower BCS loss during the experimental period and had lower NEFA concentration that the CG. There is a negative correlation between BCS and NEFA in the early postpartum period and this information explains the results observed in the present study where BCS declines in the SG are followed by a NEFA increase. This is not so marked in the CG, indicating that SG supplementation can act by improving digestibility. Yeast supplementation promotes higher output energy, enhancing postpartum performance in dairy cows. Yeast supplementation showed benefits in early lactation compared to the prepartum and early postpartum periods, suggesting that supplementation has to have an adaptation period to be effective in protein synthesis. In conclusion, supplementation with a combination of yeast culture and hydrolyzed yeast to cows during the transition period can positively influence the energy and protein metabolism, reducing the collateral effects of negative energy balance.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuxiang Song ◽  
Juan J Loor ◽  
Chenchen Zhao ◽  
Dan Huang ◽  
Xiliang Du ◽  
...  

Abstract Background Left displaced abomasum (LDA) occurs at high frequency in the early postpartum period and can affect production performance of dairy cows. Clinical diagnosis of LDA is usually done by abdominal auscultation and percussion. The purpose of this study was to explore the potential applicability of blood biomarkers for early warning and diagnosis of LDA in dairy cows. Results Twenty early postpartum healthy cows and thirty early postpartum LDA cows of similar parity were used. A receiver operating characteristic curve (ROC) method was used to analyze the sensitivity of hematological biomarkers to LDA including energy balance metabolic biomarkers, liver/kidney function biomarkers, and minerals. A cut-off point was defined for each of the selected hematological biomarkers deemed sensitive markers of LDA. Compared with healthy cows, body condition score (BCS), dry matter intake (DMI) and milk production were lower in LDA cows. Among energy metabolism markers, serum non-esterified fatty acid (NEFA), β-hydroxybutyric acid (BHBA), insulin (INS), and revised quantitative insulin sensitivity check index (RQUICKI) levels were lower while serum glucagon (GC) was greater in LDA cows. Among the liver/kidney function biomarkers, activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), the ratio of AST/ALT and levels of total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), albumin (ALB), blood urea nitrogen (BUN), creatinine, and total protein (TP) were greater in LDA cows. Among minerals analyzed, serum Cl, Ca, and K were lower in LDA cows. After ROC analysis, it was determined that serum Ca, INS, RQUICKI, ALT, GGT, and creatinine are potential indicators for early warning and diagnosis of LDA for early postpartum dairy cows. Conclusions Dairy cows with LDA were under severe negative energy balance (NEB), had signs of liver damage and potentially lower insulin sensitivity. A combination of multi-hematological biomarkers including Ca, INS, RQUICKI, ALT, GGT and creatinine has the potential to help identify cows at risk of LDA in the early postpartum period.


2020 ◽  
Author(s):  
Yuxiang Song ◽  
Juan J Loor ◽  
Chenchen Zhao ◽  
Dan Huang ◽  
Xiliang Du ◽  
...  

Abstract Background: Left displaced abomasum (LDA) occurs at high frequency in the early postpartum period and can affect production performance of dairy cows. Clinical diagnosis of LDA is usually done by abdominal auscultation and percussion. The purpose of this study was to explore the potential applicability of blood biomarkers for early warning and diagnosis of LDA in dairy cows. Results: Twenty early postpartum healthy cows and thirty early postpartum LDA cows of similar parity were used. A receiver operating characteristic curve (ROC) method was used to analyze the sensitivity of hematological biomarkers to LDA including energy balance metabolic biomarkers, liver/kidney function biomarkers, and minerals. A cut-off point was defined for each of the selected hematological biomarkers deemed sensitive markers of LDA. Compared with healthy cows, body condition score (BCS), dry matter intake (DMI) and milk production were lower in LDA cows. Among energy metabolism markers, serum non-esterified fatty acid (NEFA), β-hydroxybutyric acid (BHBA), insulin (INS), and revised quantitative insulin sensitivity check index (RQUICKI) levels were lower while serum glucagon (GC) was greater in LDA cows. Among the liver/kidney function biomarkers, activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), the ratio of AST/ALT and levels of total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), albumin (ALB), blood urea nitrogen (BUN), creatinine, and total protein (TP) were greater in LDA cows. Among minerals analyzed, serum Cl, Ca, and K were lower in LDA cows. After ROC analysis, it was determined that serum Ca, INS, RQUICKI, ALT, GGT, and creatinine are potential indicators for early warning and diagnosis of LDA for early postpartum dairy cows. Conclusions: Dairy cows with LDA were under severe negative energy balance (NEB), had signs of liver damage and potentially lower insulin sensitivity. A combination of multi-hematological biomarkers including Ca, INS, RQUICKI, ALT, GGT and creatinine has the potential to help identify cows at risk of LDA in the early postpartum period.


2009 ◽  
Vol 39 (1) ◽  
pp. 28-37 ◽  
Author(s):  
D. G. Morris ◽  
S. M. Waters ◽  
S. D. McCarthy ◽  
J. Patton ◽  
B. Earley ◽  
...  

Increased energy demands to support lactation, coupled with lowered feed intake capacity results in negative energy balance (NEB) and is typically characterized by extensive mobilization of body energy reserves in the early postpartum dairy cow. The catabolism of stored lipid leads to an increase in the systemic concentrations of nonesterified fatty acids (NEFA) and β-hydroxy butyrate (BHB). Oxidation of NEFA in the liver result in the increased production of reactive oxygen species and the onset of oxidative stress and can lead to disruption of normal metabolism and physiology. The immune system is depressed in the peripartum period and early lactation and dairy cows are therefore more vulnerable to bacterial infections causing mastitis and or endometritis at this time. A bovine Affymetrix oligonucleotide array was used to determine global gene expression in the spleen of dairy cows in the early postpartum period. Spleen tissue was removed post mortem from five severe NEB (SNEB) and five medium NEB (MNEB) cows 15 days postpartum. SNEB increased systemic concentrations of NEFA and BHB, and white blood cell and lymphocyte numbers were decreased in SNEB animals. A total of 545 genes were altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with NRF2-mediated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, natural killer cell signaling, p53 signaling, downregulation of IL-15, BCL-2, and IFN-γ; upregulation of BAX and CHOP and increased apoptosis with a potential negative impact on innate and adaptive immunity.


2020 ◽  
Author(s):  
Yuxiang Song ◽  
Juan J Loor ◽  
Chenchen Zhao ◽  
Dan Huang ◽  
Xiliang Du ◽  
...  

Abstract Background: Left displaced abomasum (LDA) occurs at high frequency in the early postpartum period and can affect production performance of dairy cows. Clinical diagnosis of LDA is usually done by abdominal auscultation and percussion. The purpose of this study was to explore the potential applicability of blood biomarkers for early warning and diagnosis of LDA in dairy cows.Results: Twenty early postpartum healthy cows and thirty early postpartum LDA cows of similar parity were used. A receiver operating characteristic curve (ROC) method was used to analyze the sensitivity of hematological biomarkers to LDA including energy balance metabolic biomarkers, liver/kidney function biomarkers, and minerals. A cut-off point was defined for each of the selected hematological biomarkers deemed sensitive markers of LDA. Compared with healthy cows, body condition score (BCS), dry matter intake (DMI) and milk production were lower in LDA cows. Among energy metabolism markers, serum non-esterified fatty acid (NEFA), β-hydroxybutyric acid (BHBA), insulin (INS), and revised quantitative insulin sensitivity check index (RQUICKI) levels were lower while serum glucagon (GC) was greater in LDA cows. Among the liver/kidney function biomarkers, activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), the ratio of AST/ALT and levels of total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), albumin (ALB), blood urea nitrogen (BUN), creatinine, and total protein (TP) were greater in LDA cows. Among minerals analyzed, serum Cl, Ca, and K were lower in LDA cows. After ROC analysis, it was determined that serum Ca, INS, RQUICKI, ALT, GGT, and creatinine are potential indicators for early warning and diagnosis of LDA for early postpartum dairy cows.Conclusions: Dairy cows with LDA were under severe negative energy balance (NEB), had signs of liver damage and potentially lower insulin sensitivity. A combination of multi-hematological biomarkers including Ca, INS, RQUICKI, ALT, GGT and creatinine has the potential to help identify cows at risk of LDA in the early postpartum period.


2001 ◽  
Vol 2001 ◽  
pp. 215-215 ◽  
Author(s):  
D.R. Mackey ◽  
A.R.G. Wylie ◽  
J.F. Roche ◽  
J.M. Sreenan ◽  
M.G. Diskin

Severe negative energy balance (NEB) in the postpartum period of dairy cows may be associated with declining fertility but the mechanisms by which nutrition influences reproduction are complex, poorly understood and confounded by lactation. Hence, both chronic and acute nutritional restriction of beef heifers have been used as models to examine the effects of NEB on ovarian and endocrine responses in the absence of lactation. Plasma IGF-I concentrations gradually decreased until the onset of anoestrus (Stagg et al., 1999) but concentrations may be confounded with stage of the oestrous cycle, especially around ovulation (Mackey et al., 2000). Therefore, the aim of this study was to examine the effect of nutritional restriction on periovulatory oestradiol (E2) and IGF-I concentrations.


2019 ◽  
Vol 28 (3) ◽  
pp. 689-693 ◽  
Author(s):  
Behrooz Mihandoost ◽  
Asghar Mogheiseh ◽  
Saeed Nazifi ◽  
Mohammad Rahim Ahmadi ◽  
Maryam Ansari-Lari

2019 ◽  
Vol 81 (3) ◽  
pp. 491-498 ◽  
Author(s):  
Cyril P. STEPHEN ◽  
Walter H. JOHNSON ◽  
Stephen J. LEBLANC ◽  
Robert A. FOSTER ◽  
Tracey S. CHENIER

Sign in / Sign up

Export Citation Format

Share Document